Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters

Therapeutic Methods and Therapies TCIM
Database
Language
Publication year range
1.
Am J Chin Med ; 51(1): 149-168, 2023.
Article in English | MEDLINE | ID: mdl-36437552

ABSTRACT

During menopause, the sharp decline in estrogen levels leads to an increased risk of cardiovascular disease in women. The inflammatory response and oxidative stress are reportedly involved in the development of cardiovascular disorders postmenopause. In this study, we evaluated the cardioprotective effects of puerarin, a phytoestrogen derived from the root of Pueraria lobate, and investigated its underlying molecular mechanisms. Puerarin alleviated cytotoxicity and the production of reactive oxygen species (ROS) in lipopolysaccharide (LPS)- and hydrogen peroxide-stimulated H9c2 cardiomyoblasts. Puerarin scavenges free radicals and reduces apoptosis, thereby suppressing NADPH oxidase-1 and Bax activation to attenuate the production of ROS and restore Bcl-2 expression. Additionally, puerarin inhibited the expression of inducible nitric oxide synthase, cyclooxygenase-2, and nitric oxide production and decreased the hypertrophic phenotype under LPS stimulation. Treatment with puerarin reduced the levels of malondialdehyde and restored glutathione levels when facing oxidative stress. Mechanistically, puerarin inhibited both the LPS-induced Toll-like receptor 4/NF-[Formula: see text]B and mitogen-activated protein kinase signaling pathways. Furthermore, it reversed both the LPS-mediated downregulation of Akt activation and heme oxygenase-1 (HO-1) expression. The cardioprotective effects of puerarin were abolished by inhibitors of Akt and HO-1 and the estrogen receptor antagonist fulvestrant (ICI). This indicated that the estrogen receptor mediated by these two molecules plays important roles in conferring the anti-inflammatory and anti-oxidative functions of puerarin. These results demonstrate the therapeutic potential of puerarin for treating heart disease in postmenopausal women through Akt and HO-1 activation.


Subject(s)
Heme Oxygenase-1 , Proto-Oncogene Proteins c-akt , Female , Animals , Heme Oxygenase-1/genetics , Heme Oxygenase-1/metabolism , Reactive Oxygen Species/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Postmenopause , Lipopolysaccharides , Anti-Inflammatory Agents/pharmacology , NF-E2-Related Factor 2/metabolism , Nitric Oxide Synthase Type II/metabolism
2.
Elife ; 62017 05 30.
Article in English | MEDLINE | ID: mdl-28556776

ABSTRACT

Hemodynamic forces regulate vascular functions. Disturbed flow (DF) occurs in arterial bifurcations and curvatures, activates endothelial cells (ECs), and results in vascular inflammation and ultimately atherosclerosis. However, how DF alters EC metabolism, and whether resulting metabolic changes induce EC activation, is unknown. Using transcriptomics and bioenergetic analysis, we discovered that DF induces glycolysis and reduces mitochondrial respiratory capacity in human aortic ECs. DF-induced metabolic reprogramming required hypoxia inducible factor-1α (HIF-1α), downstream of NAD(P)H oxidase-4 (NOX4)-derived reactive oxygen species (ROS). HIF-1α increased glycolytic enzymes and pyruvate dehydrogenase kinase-1 (PDK-1), which reduces mitochondrial respiratory capacity. Swine aortic arch endothelia exhibited elevated ROS, NOX4, HIF-1α, and glycolytic enzyme and PDK1 expression, suggesting that DF leads to metabolic reprogramming in vivo. Inhibition of glycolysis reduced inflammation suggesting a causal relationship between flow-induced metabolic changes and EC activation. These findings highlight a previously uncharacterized role for flow-induced metabolic reprogramming and inflammation in ECs.


Subject(s)
Endothelium, Vascular/metabolism , Gene Expression Regulation , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Regional Blood Flow , Animals , Cell Respiration , Cells, Cultured , Endothelial Cells/metabolism , Energy Metabolism , Gene Expression Profiling , Glycolysis , Humans , Swine
3.
Thromb Res ; 119(6): 769-75, 2007.
Article in English | MEDLINE | ID: mdl-16844201

ABSTRACT

Salviae miltiorrhizae (SM), a clinical, commonly used herb, can activate blood circulation and resolve stasis. We have investigated the effects of salvianolic acid B (Sal B), a pure compound extracted from the dried SM roots, on fibrinolytic (tissue-type plasminogen activator and plasminogen activator inhibitor, t-PA and PAI) and anticoagulant (thrombomodulin,TM) properties of cultured human umbilical vein endothelial cells (HUVECs). When HUVECs were treated with Sal B, a dose- (0.0125-0.5 mg/ml) and a time-dependent decrease in PAI activity were observed. PAI type 1 (PAI-1) antigen and PAI-1 mRNA expression significantly decreased compared to control values in the conditioned media of HUVECs pretreated with Sal B for 12 h. Moreover, TM activity reached a maximum stimulation of 1.25-fold over control levels in the pretreatment of Sal B for 12 h and t-PA and TM specific mRNA expression also increased (1.7- and 1.8-fold, respectively). In conclusion, Sal B increased the fibrinolytic and anticoagulant potential of cultured HUVECs by up-regulating the expression of t-PA and TM and by down-regulating the expression of PAI-1. These data suggest that Sal B is clinically effective because of its ability to change the gene expression profile of endothelial cells thereby preventing vascular events.


Subject(s)
Benzofurans/pharmacology , Drugs, Chinese Herbal/pharmacology , Endothelial Cells/physiology , Hemostasis/drug effects , Umbilical Veins/physiology , Cell Survival/drug effects , Cells, Cultured , Endothelial Cells/metabolism , Fibrinolytic Agents/metabolism , Humans , Plasminogen Activator Inhibitor 1/genetics , Plasminogen Activator Inhibitor 1/metabolism , Plasminogen Inactivators/metabolism , RNA, Messenger/metabolism , Thrombomodulin/drug effects , Thrombomodulin/genetics , Thrombomodulin/physiology , Tissue Plasminogen Activator/genetics , Umbilical Veins/cytology , Umbilical Veins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL