Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
J Exp Bot ; 73(8): 2525-2539, 2022 04 18.
Article in English | MEDLINE | ID: mdl-35084469

ABSTRACT

The roles of cytosolic O-acetylserine-(thiol)-lyase A (OASTLA), chloroplastic OASTLB, and mitochondrial OASTLC in plant selenate resistance were studied in Arabidopsis. Impairment in OASTLA and OASTLB resulted in reduced biomass, chlorophyll and soluble protein content compared with selenate-treated OASTLC-impaired and wild-type plants. The generally lower total selenium (Se), protein-Se, organic-sulfur and protein-sulfur (S) content in oastlA and oastlB compared with wild-type and oastlC leaves indicated that Se accumulation was not the main cause for the stress symptoms in these mutants. Notably, the application of selenate positively induced S-starvation markers and the OASTLs, followed by increased sulfite reductase, sulfite oxidase activities, and increased sulfite and sulfide concentrations. Taken together, our results indicate a futile anabolic S-starvation response that resulted in lower glutathione and increased oxidative stress symptoms in oastlA and oastlB mutants. In-gel assays of l-cysteine and l-seleno-cysteine, desulfhydrase activities revealed that two of the three OASTL activity bands in each of the oastl single mutants were enhanced in response to selenate, whereas the impaired proteins exhibited a missing activity band. The absence of differently migrated activity bands in each of the three oastl mutants indicates that these OASTLs are major components of desulfhydrase activity, degrading l-cysteine and l-seleno-cysteine in Arabidopsis.


Subject(s)
Arabidopsis , Lyases , Selenium , Arabidopsis/metabolism , Carbon-Oxygen Lyases/metabolism , Cysteine/metabolism , Lyases/metabolism , Selenic Acid , Selenium/metabolism , Serine/analogs & derivatives , Sulfhydryl Compounds/metabolism , Sulfites/metabolism , Sulfur/metabolism
2.
Plant Physiol ; 175(1): 272-289, 2017 Sep.
Article in English | MEDLINE | ID: mdl-28743765

ABSTRACT

Salicornia and Sarcocornia are almost identical halophytes whose edible succulent shoots hold promise for commercial production in saline water. Enhanced sulfur nutrition may be beneficial to crops naturally grown on high sulfate. However, little is known about sulfate nutrition in halophytes. Here we show that Salicornia europaea (ecotype RN) exhibits a significant increase in biomass and organic-S accumulation in response to supplemental sulfate, whereas Sarcocornia fruticosa (ecotype VM) does not, instead exhibiting increased sulfate accumulation. We investigated the role of two pathways on organic-S and biomass accumulation in Salicornia and Sarcoconia: the sulfate reductive pathway that generates Cys and l-Cys desulfhydrase that degrades Cys to H2S, NH3, and pyruvate. The major function of O-acetyl-Ser-(thiol) lyase (OAS-TL; EC 2.5.1.47) is the formation of l-Cys, but our study shows that the OAS-TL A and OAS-TL B of both halophytes are enzymes that also degrade l-Cys to H2S. This activity was significantly higher in Sarcocornia than in Salicornia, especially upon sulfate supplementation. The activity of the sulfate reductive pathway key enzyme, adenosine 5'-phosphosulfate reductase (APR, EC 1.8.99.2), was significantly higher in Salicornia than in Sarcocornia These results suggest that the low organic-S level in Sarcocornia is the result of high l-Cys degradation rate by OAS-TLs, whereas the greater organic-S and biomass accumulation in Salicornia is the result of higher APR activity and low l-Cys degradation rate, resulting in higher net Cys biosynthesis. These results present an initial road map for halophyte growers to attain better growth rates and nutritional value of Salicornia and Sarcocornia.


Subject(s)
Amaranthaceae/metabolism , Chenopodiaceae/metabolism , Cysteine/metabolism , Plant Proteins/metabolism , Salsola/metabolism , Sulfur/metabolism , Amaranthaceae/drug effects , Biomass , Chenopodiaceae/drug effects , Cysteine Synthase/metabolism , Oxidoreductases Acting on Sulfur Group Donors/metabolism , Salinity , Salsola/drug effects , Salt-Tolerant Plants , Sodium/pharmacology , Sulfates/pharmacology , Sulfhydryl Compounds/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL