Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters

Therapeutic Methods and Therapies TCIM
Database
Country/Region as subject
Language
Affiliation country
Publication year range
1.
Microbiol Spectr ; 11(3): e0100223, 2023 06 15.
Article in English | MEDLINE | ID: mdl-37184408

ABSTRACT

Limited treatment options exist for the treatment of carbapenem-resistant Enterobacterales (CRE) bacteria. Fortunately, there are several recently approved antibiotics indicated for CRE infections. Here, we examine the in vitro activity of various novel agents (eravacycline, plazomicin, ceftazidime-avibactam, imipenem-relebactam, and meropenem-vaborbactam) and comparators (tigecycline, amikacin, levofloxacin, fosfomycin, polymyxin B) against 365 well-characterized CRE clinical isolates with various genotypes. Nonduplicate isolates collected from the largest public health hospital in Singapore between 2007 and 2020 were subjected to antimicrobial susceptibility testing (broth microdilution or antibiotic gradient test strips). Susceptibilities were defined using Clinical and Laboratory Standards Institute (CLSI) or Food and Drug Administration (FDA) interpretative criteria. Sequence types and resistance mechanisms were characterized using short-read whole-genome sequencing. Overall, tigecycline and plazomicin exhibited the highest susceptibility rates (89.6% and 80.8%, respectively). However, the tigecycline susceptibility breakpoint utilized here may be outdated in view of prevailing pharmacokinetic-pharmacodynamic (PK/PD) data. Susceptibility varied by carbapenemase genotype; the ß-lactam/ß-lactamase inhibitor combinations were equally active (92.3 to 99.2% susceptible) against KPC producers, but only ceftazidime-avibactam retained high susceptibility (98.7%) against OXA-48-like producers. Against metallo-ß-lactamase producers, only plazomicin exhibited moderate activity (77.0% susceptible). Aminoglycoside activity was also influenced by carbapenemase genotypes. This work provides an insight into the comparative activity and presumptive utility of novel agents in this geographic region. IMPORTANCE This study determined the susceptibilities of carbapenem-resistant Enterobacterales isolates to various novel antimicrobial agents (ceftazidime-avibactam, imipenem-relebactam, meropenem-vaborbactam, eravacycline, and plazomicin). Whole-genome sequencing was performed for all strains. Our study findings provide insights into the comparative activities of novel agents in this geographic region. Plazomicin and ceftazidime-avibactam exhibited the lowest nonsusceptibility rates and may be considered promising agents in the management of carbapenem-resistant Enterobacterales infections. We note also that antibiotic activity is influenced by genotypes and that understanding the geographic region's molecular epidemiology could aid in the definition of the presumptive utility of novel agents and contribute to antibiotic decision-making.


Subject(s)
Anti-Bacterial Agents , Carbapenems , Meropenem , Carbapenems/pharmacology , Tigecycline/pharmacology , Anti-Bacterial Agents/pharmacology , beta-Lactamases/genetics , beta-Lactamase Inhibitors/pharmacology , Imipenem/pharmacology , Microbial Sensitivity Tests
2.
BMC Infect Dis ; 19(1): 63, 2019 Jan 17.
Article in English | MEDLINE | ID: mdl-30654757

ABSTRACT

BACKGROUND: Antifungal resistance rates are increasing. We investigated the mechanisms of azole resistance of Candida spp. bloodstream isolates obtained from a surveillance study conducted between 2012 and 2015. METHODS: Twenty-six azole non-susceptible Candida spp. clinical isolates were investigated. Antifungal susceptibilities were determined using the Sensititre YeastOne® YO10 panel. The ERG11 gene was amplified and sequenced to identify amino acid polymorphisms, while real-time PCR was utilised to investigate the expression levels of ERG11, CDR1, CDR2 and MDR1. RESULTS: Azole cross-resistance was detected in all except two isolates. Amino acid substitutions (A114S, Y257H, E266D, and V488I) were observed in all four C. albicans tested. Of the 17 C. tropicalis isolates, eight (47%) had ERG11 substitutions, of which concurrent observation of Y132F and S154F was the most common. A novel substitution (I166S) was detected in two of the five C. glabrata isolates. Expression levels of the various genes differed between the species but CDR1 and CDR2 overexpression appeared to be more prominent in C. glabrata. CONCLUSIONS: There was interplay of various different mechanisms, including mechanisms which were not studied here, responsible for azole resistance in Candida spp in our study.


Subject(s)
Antifungal Agents/therapeutic use , Azoles/therapeutic use , Candida/genetics , Candida/isolation & purification , Candidemia/drug therapy , Candidemia/microbiology , Drug Resistance, Fungal/genetics , Amino Acid Substitution , Candida albicans/genetics , Candida albicans/isolation & purification , Fluconazole/therapeutic use , Fungal Proteins/genetics , Gene Expression Profiling , Gene Expression Regulation, Fungal , Humans , Microbial Sensitivity Tests
3.
Antimicrob Agents Chemother ; 60(7): 4013-22, 2016 07.
Article in English | MEDLINE | ID: mdl-27090177

ABSTRACT

Polymyxins have emerged as a last-resort treatment of extensively drug-resistant (XDR) Gram-negative Bacillus (GNB) infections, which present a growing threat. Individualized polymyxin-based antibiotic combinations selected on the basis of the results of in vitro combination testing may be required to optimize therapy. A retrospective cohort study of hospitalized patients receiving polymyxins for XDR GNB infections from 2009 to 2014 was conducted to compare the treatment outcomes between patients receiving polymyxin monotherapy (MT), nonvalidated polymyxin combination therapy (NVCT), and in vitro combination testing-validated polymyxin combination therapy (VCT). The primary and secondary outcomes were infection-related mortality and microbiological eradication, respectively. Adverse drug reactions (ADRs) between treatment groups were assessed. A total of 291 patients (patients receiving MT, n = 58; patients receiving NVCT, n = 203; patients receiving VCT, n = 30) were included. The overall infection-related mortality rate was 23.0% (67 patients). In the multivariable analysis, treatment of XDR GNB infections with MT (adjusted odds ratio [aOR], 8.49; 95% confidence interval [CI], 1.56 to 46.05) and NVCT (aOR, 5.75; 95% CI, 1.25 to 25.73) was associated with an increased risk of infection-related mortality compared to that with treatment with VCT. A higher Acute Physiological and Chronic Health Evaluation II (APACHE II) score (aOR, 1.14; 95% CI 1.07 to 1.21) and a higher Charlson comorbidity index (aOR, 1.28; 95% CI, 1.11 to 1.47) were also independently associated with an increased risk of infection-related mortality. No increase in the incidence of ADRs was observed in the VCT group. The use of an individualized antibiotic combination which was selected on the basis of the results of in vitro combination testing was associated with significantly lower rates of infection-related mortality in patients with XDR GNB infections. Future prospective randomized studies will be required to validate these findings.


Subject(s)
Anti-Bacterial Agents/therapeutic use , Gram-Negative Bacteria/drug effects , Gram-Negative Bacteria/pathogenicity , Gram-Negative Bacterial Infections/drug therapy , Polymyxins/therapeutic use , Adolescent , Adult , Aged , Aged, 80 and over , Female , Gram-Negative Bacterial Infections/microbiology , Humans , Male , Microbial Sensitivity Tests , Middle Aged , Retrospective Studies , Young Adult
4.
BMC Infect Dis ; 13: 523, 2013 Nov 06.
Article in English | MEDLINE | ID: mdl-24195651

ABSTRACT

BACKGROUND: Ertapenem (preferred choice for ESBL-producing organisms) use exhibited an increasing trend from 2006 to 2008. As extensive use of ertapenem might induce the mutation of resistant bacteria strains to ertapenem, we aimed to assess the appropriateness and impact of ertapenem-use, on ESBL production, the trends of gram-negative bacterial resistance and on the utilization of other antibiotics in our institution. METHODS: Inpatients who received a dose of ertapenem during 1 January 2006 to 31 December 2008, were reviewed. Pertinent patient clinical data was extracted from the pharmacy databases and assessed for appropriateness based on dose and indication. Relevant data from Network for Antimicrobial Resistance Surveillance (Singapore) (NARSS) was extracted, to cross-correlate with ertapenem via time series to assess its impact on hospital epidemiology, trends of gram-negative resistance and consumption of other antibiotics from 2006 to mid-2010. RESULTS: 906 cases were reviewed. Ertapenem therapy was appropriate in 72.4% (93.7% success rate). CNS adverse events were noted in 3.2%. Readmission rate (30-day) due to re-infection (same pathogen) was 5.5%. Fifty cases had cultures growing Pseudomonas aeruginosa within 30 days of ertapenem initiation, with 25 cases growing carbapenem-resistant Pseudomonas aeruginosa.Ertapenem use increased from 0.45 DDD/100 patient days in 2006 to 1.2 DDD/100 patient days in mid-2010. Overall, the increasing trend of ertapenem consumption correlated with 1) increasing incidence-densities of ciprofloxacin-resistant/cephalosporin-resistant E. coli at zero time lag; 2) increasing incidence-densities of ertapenem-resistant Escherichia. coli and Klebsiella spp. at zero time lag; 3) increasing incidence-density of carbapenem-resistant Pseudomonas aeruginosa, at zero time lag.Increasing ertapenem consumption was significantly correlated with decreasing consumption of cefepime (R2 = 0.37344) 3 months later. It was significantly correlated with a decrease in imipenem consumption (R2 = 0.31081), with no time lag but was correlated with subsequent increasing consumption of meropenem (R2 = 0.4092) 6 months later. CONCLUSION: Ertapenem use was appropriate. Increasing Ertapenem consumption did not result in a decreasing trend of ESBL producing enterobacteriaceae and could result in the selection for multi-drug resistant bacteria.


Subject(s)
Anti-Bacterial Agents/therapeutic use , Bacterial Proteins/metabolism , Drug Resistance, Multiple, Bacterial , Gram-Negative Bacteria/drug effects , Gram-Negative Bacterial Infections/drug therapy , beta-Lactamases/metabolism , beta-Lactams/therapeutic use , Adolescent , Adult , Aged , Aged, 80 and over , Carbapenems/pharmacology , Carbapenems/therapeutic use , Cephalosporins/pharmacology , Child , Child, Preschool , Drug Resistance, Multiple, Bacterial/drug effects , Ertapenem , Female , Gram-Negative Bacteria/classification , Gram-Negative Bacteria/enzymology , Gram-Negative Bacteria/isolation & purification , Gram-Negative Bacterial Infections/microbiology , Hospitals, General/statistics & numerical data , Humans , Imipenem/pharmacology , Male , Meropenem , Microbial Sensitivity Tests , Middle Aged , Retrospective Studies , Singapore , Thienamycins/pharmacology , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL