Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
1.
PLoS One ; 19(1): e0296487, 2024.
Article in English | MEDLINE | ID: mdl-38285695

ABSTRACT

Saengmaeksan (SMS), a representative oriental medicine that contains Panax ginseng Meyer, Liriope muscari, and Schisandra chinensis (1:2:1), is used to improve body vitality and enhance physical activity. However, there is limited scientific evidence to validate the benefits of SMS. Here, we investigated the in vitro and in vivo regulatory effects of SMS and its constituents on energy metabolism and the underlying molecular mechanisms. For this, quantitative real-time polymerase chain reaction, 3D holotomographic microscopy, western blotting, and glucose uptake experiments using 18F-fluoro-2-deoxy-D-glucose (18F-FDG) were performed using L6 cells to investigate in vitro energy metabolism changes. In addition, 18F-fluorocholine (18F-FCH) and 18F-FDG positron emission tomography/computed tomography (PET/CT) analyses, immunohistochemistry, and respiratory gas analysis were performed in mice post-endurance exercise on a treadmill. In the energy metabolism of L6 cells, a significant reversal in glucose uptake was observed in the SMS-treated group, as opposed to an increase in uptake over time compared to the untreated control group. Furthermore, P. ginseng alone and SMS significantly decreased the volume of lipid droplets. SMS also regulated the phosphorylation of extracellular signal-regulated kinase (ERK), phosphorylation of p38, mitochondrial morphology, and the expression of apurinic/apyrimidinic endonuclease 1/redox factor-1 (APE/Ref-1) in H2O2-stimulated L6 cells. In addition, SMS treatment was found to regulate whole body and muscle energy metabolism in rats subjected to high-intensity exercise, as well as glucose and lipid metabolism in skeletal muscle. Therefore, SMS containing P. ginseng ameliorated imbalanced energy metabolism through oxidative stress-induced APE/Ref-1 expression. SMS may be a promising supplemental option for metabolic performance.


Subject(s)
Hominidae , Panax , Rats , Mice , Animals , Positron Emission Tomography Computed Tomography , Fluorodeoxyglucose F18 , Panax/chemistry , Hydrogen Peroxide , Glucose , Energy Metabolism
2.
Cells ; 12(13)2023 07 03.
Article in English | MEDLINE | ID: mdl-37443802

ABSTRACT

Angelica keiskei Koidzumi (A. keiskei) is used as a traditional medicine, anti-aging agent, and health food, as well as to restore vitality. Xanthoangelol (xanol), a prenylated chalcone, is the predominant constituent of A. keiskei. Oral squamous cell carcinoma (OSCC), the most common malignancy, has a high proliferation rate and frequent metastasis. However, it is unknown whether xanol has anti-OSCC effects on apoptosis, autophagy, and necroptosis. In the present study, we purified xanol from A. keiskei and demonstrated that it suppressed cell proliferation and induced cytotoxicity in human OSCC. Xanol triggered apoptotic cell death by regulating apoptotic machinery molecules but inhibited necroptotic cell death by dephosphorylating the necroptotic machinery molecules RIP1, RIP3, and MLKL in human OSCC. We also found that xanol inhibited the PI3K/AKT/mTOR/p70S6K pathway and induced autophagosome formation by enhancing beclin-1 and LC3 expression levels and reducing p62 expression levels. Furthermore, we showed that xanol prevented the metastatic phenotypes of human OSCC by inhibiting migration and invasion via the reduction of MMP13 and VEGF. Finally, we demonstrated that xanol exerted anticancer effects on tumorigenicity associated with its transformed properties. Taken together, these findings demonstrate the anticancer effects and biological mechanism of action of xanol as an effective phytomedicine for human OSCC.


Subject(s)
Carcinoma, Squamous Cell , Head and Neck Neoplasms , Mouth Neoplasms , Humans , Carcinoma, Squamous Cell/pathology , Squamous Cell Carcinoma of Head and Neck , Proto-Oncogene Proteins c-akt/metabolism , Phosphatidylinositol 3-Kinases , Necroptosis , Mouth Neoplasms/genetics , Apoptosis , Autophagy
3.
Chemosphere ; 227: 551-560, 2019 Jul.
Article in English | MEDLINE | ID: mdl-31004822

ABSTRACT

Precise in vivo toxicological assays to determine the cardiotoxicity of pharmaceuticals and their waste products are essential in order to evaluate their risks to humans and the environment following industrial release. In the present study, we aimed to develop the sensitive imaging-based cardiotoxicity assay and combined 3D light-sheet microscopy with a zebrafish model to identify hidden cardiovascular anomalies induced by valproic acid (VPA) exposure. The zebrafish model is advantageous for this assessment because its embryos remain transparent. The 3D spatial localization of fluorescence-labeled cardiac cells in and around the heart using light-sheet technology revealed dislocalization of the heart from the outflow tract in two-day-old zebrafish embryos treated with 50 µM and 100 µM VPA (P < 0.01) and those embryos exposed to 20 µM VPA presented hypoplastic distal ventricles (P < 0.01). These two observed phenotypes are second heart field-derived cardiac defects. Quantitative analysis of the light-sheet imaging demonstrated that folic acid (FA) supplementation significantly increased the numbers of endocardial and myocardial cells (P < 0.05) and the accretion of second heart field-derived cardiomyocytes to the arterial pole of the outflow tract. The heart rate increased in response to the cellular changes occurring in embryonic heart development (P < 0.05). The present study disclosed the cellular mechanism underlying the role of FA in spontaneous cellular changes in cardiogenesis and in VPA-associated cardiotoxicity. The 3D light-sheet assay may be the next-generation test to evaluate the risks of previously undetected pharmaceutical and environmental cardiotoxicities in both humans and animals.


Subject(s)
Cardiotoxicity/diagnostic imaging , Folic Acid/therapeutic use , Heart Defects, Congenital/chemically induced , Valproic Acid/toxicity , Zebrafish/embryology , Animals , Biological Assay/methods , Cardiotoxicity/drug therapy , Cardiotoxicity/etiology , Diagnostic Imaging/methods , Embryo, Nonmammalian/drug effects , Embryonic Development/drug effects , Intravital Microscopy/methods , Myocytes, Cardiac/drug effects , Myocytes, Cardiac/pathology
4.
Article in English | MEDLINE | ID: mdl-25477995

ABSTRACT

Caffeic acid phenethyl ester (CAPE) is an active component of propolis that has a variety of potential pharmacological effects. Although we previously demonstrated that propolis has antidepressant-like activity, the effect of CAPE on this activity remains unknown. The present study assessed whether treatment with CAPE (5, 10, and 20 µmol/kg for 21 days) has an antidepressant-like effect in mice subjected to chronic unpredictable stress via tail suspension (TST) and forced swim (FST) tests. CAPE administration induced behaviors consistent with an antidepressant effect, evidenced by decreased immobility in the TST and FST independent of any effect on serum corticosterone secretion. Western blots, conducted subsequent to behavioral assessment, revealed that CAPE significantly decreased glucocorticoid receptor phosphorylation at S234 (pGR(S234)), resulting in an increased pGR(S220/S234) ratio. We also observed negative correlations between pGR(S220)/(S234) and p38 mitogen-activated protein kinase (p38MAPK) phosphorylation, which was decreased by CAPE treatment. These findings suggest that CAPE treatment exerts an antidepressant-like effect via downregulation of p38MAPK phosphorylation, thereby contributing to enhanced GR function.

5.
Chin Med J (Engl) ; 127(19): 3396-405, 2014.
Article in English | MEDLINE | ID: mdl-25269903

ABSTRACT

BACKGROUND: Danshen (Radix Salvia miltiorrhizae) has been used as a traditional medicine in Asia for treatment of various microcirculatory disturbance related diseases. Tanshinones are mainly hydrophobic active components, which have been isolated from Danshen and show various biological functions. In this study, we observed the neuroprotective effect of tanshinone I (TsI) against ischemic damage in the gerbil hippocampal CA1 region (CA1) after transient cerebral ischemia and examined its neuroprotective mechanism. METHODS: The gerbils were divided into vehicle-treated-sham-group, vehicle-treated-ischemia-group, TsI-treated-sham-group, and TsI-treated-ischemia-group. TsI was administrated intraperitoneally three times (once a day for three days) before ischemia-reperfusion. The neuroprotective effect of TsI was examined using H&E staining, neuronal nuclei (NeuN) immunohistochemistry and Fluoro-Jade B staining. To investigate the neuroprotective mechanism of TsI after ischemia-reperfusion, immunohistochemical (IHC) and Western blotting analyses for Cu, Zn-superoxide dismutase (SOD1), Mn-superoxide dismutase (SOD2), brain-derived neurotrophic factor (BDNF) and insulin-like growth factor-I (IGF-I) were performed. RESULTS: Treatment with TsI protected pyramidal neurons from ischemia-induced neuronal death in the CA1 after ischemia-reperfusion. In addition, treatment with TsI maintained the levels of SOD1 and SOD2 as determined by IHC and Western blotting in the CA1 after ischemia-reperfusion compared with the vehicle-ischemia-group. In addition, treatment with TsI increased the levels of BDNF and IGF-I determined by IHC and Western blotting in the TsI-treated-sham-group compared with the vehicle-treated-sham-group, and their levels were maintained in the stratum pyramidale of the ischemic CA1 in the TsI-treated-ischemia-group. CONCLUSION: Treatment with TsI protects pyramidal neurons of the CA1 from ischemic damage induced by transient cerebral ischemia via the maintenance of antioxidants and the increase of neurotrophic factors.


Subject(s)
Abietanes/therapeutic use , Antioxidants/metabolism , Brain Ischemia/drug therapy , Brain Ischemia/metabolism , Hippocampus/metabolism , Nerve Growth Factors/metabolism , Animals , Blotting, Western , Brain-Derived Neurotrophic Factor/metabolism , Gerbillinae , Immunohistochemistry , Insulin-Like Growth Factor I/metabolism , Male , Superoxide Dismutase/metabolism , Superoxide Dismutase-1
6.
Neurochem Res ; 39(7): 1300-12, 2014 Jul.
Article in English | MEDLINE | ID: mdl-24760430

ABSTRACT

Tanshinone I (TsI) is an important lipophilic diterpene extracted from Danshen (Radix Salvia miltiorrhizae) and has been used in Asia for the treatment of cerebrovascular diseases such as ischemic stroke. In this study, we examined the neuroprotective effect of TsI against ischemic damage and its neuroprotective mechanism in the gerbil hippocampal CA1 region (CA1) induced by 5 min of transient global cerebral ischemia. Pre-treatment with TsI protected pyramidal neurons from ischemic damage in the stratum pyramidale (SP) of the CA1 after ischemia-reperfusion. The pre-treatment with TsI increased the immunoreactivities and protein levels of anti-inflammatory cytokines [interleukin (IL)-4 and IL-13] in the TsI-treated-sham-operated-groups compared with those in the vehicle-treated-sham-operated-groups; however, the treatment did not increase the immunoreactivities and protein levels of pro-inflammatory cytokines (IL-2 and tumor necrosis factor-α). On the other hand, in the TsI-treated-ischemia-operated-groups, the immunoreactivities and protein levels of all the cytokines were maintained in the SP of the CA1 after transient cerebral ischemia. In addition, we examined that IL-4 injection into the lateral ventricle did not protect pyramidal neurons from ischemic damage. In conclusion, these findings indicate that the pre-treatment with TsI can protect against ischemia-induced neuronal death in the CA1 via the increase or maintenance of endogenous inflammatory cytokines, and exogenous IL-4 does not protect against ischemic damage.


Subject(s)
Abietanes/therapeutic use , Anti-Inflammatory Agents, Non-Steroidal/therapeutic use , Brain Ischemia/prevention & control , Hippocampus/drug effects , Neuroprotective Agents/therapeutic use , Reperfusion Injury/prevention & control , Abietanes/pharmacology , Animals , Anti-Inflammatory Agents, Non-Steroidal/pharmacology , Brain Ischemia/metabolism , Brain Ischemia/pathology , Drugs, Chinese Herbal/pharmacology , Drugs, Chinese Herbal/therapeutic use , Gerbillinae , Hippocampus/metabolism , Hippocampus/pathology , Male , Neuroprotective Agents/pharmacology , Reperfusion Injury/metabolism , Reperfusion Injury/pathology , Treatment Outcome
7.
J Antimicrob Chemother ; 69(6): 1599-607, 2014 Jun.
Article in English | MEDLINE | ID: mdl-24519481

ABSTRACT

OBJECTIVES: Mycobacterium abscessus is known to be the most drug-resistant Mycobacterium and accounts for ∼80% of pulmonary infections caused by rapidly growing mycobacteria. This study reports a new Drosophila melanogaster-M. abscessus infection model that can be used as an in vivo efficacy model for anti-M. abscessus drug potency assessment. METHODS: D. melanogaster were challenged with M. abscessus, and infected flies were fed with a fly medium containing tigecycline, clarithromycin, linezolid, clofazimine, moxifloxacin, amikacin, cefoxitin, dinitrobenzamide or metronidazole at different concentrations (0, 100 and 500 mg/L). The survival rates of infected flies were plotted and bacterial colonization/dissemination in fly bodies was monitored by cfu determination and green fluorescent protein epifluorescence. RESULTS: The D. melanogaster-M. abscessus model enabled an assessment of the effectiveness of antibiotic treatment. Tigecycline was the best drug for extending the lifespan of M. abscessus-infected Drosophila, followed by clarithromycin and linezolid. Several different combinations of tigecycline, linezolid and clarithromycin were tested to determine the best combination. Tigecycline (25 mg/L) plus linezolid (500 mg/L) was the best drug combination and its efficacy was superior to conventional regimens, not only in prolonging infected fly survival but also against M. abscessus colonization and dissemination. CONCLUSIONS: This D. melanogaster-M. abscessus infection/curing methodology may be useful for the rapid evaluation of potential drug candidates. In addition, new combinations using tigecycline and linezolid should be considered as possible next-generation combination therapies to be assessed in higher organisms.


Subject(s)
Anti-Bacterial Agents/pharmacology , Mycobacterium Infections/microbiology , Mycobacterium/drug effects , Animals , Anti-Bacterial Agents/therapeutic use , Bacterial Load/drug effects , Disease Models, Animal , Drosophila , Drug Evaluation, Preclinical , Drug Therapy, Combination , Female , Gene Expression , Genes, Reporter , Mycobacterium/genetics , Mycobacterium Infections/drug therapy , Mycobacterium Infections/mortality
8.
Article in English | MEDLINE | ID: mdl-23853655

ABSTRACT

Propolis is a natural product made by honeybees that has been widely used in folk medicine with a broad spectrum of biological activities. To investigate the antidepressant-like activity of propolis extract, CD-1 mice were administered an ethanol extract of propolis (50, 100, or 200 mg/kg, p.o.) prior to the behavioral test. The propolis extract-treated group showed a dose-dependent decrease in immobility time in the FST and tail suspension test without altering locomotor activity. Propolis extract decreased the limbic hypothalamic-pituitary-adrenal axis response to the FST as indicated by an attenuated corticosterone response and decreased in c-fos immunoreactive neurons in the hippocampal dentate gyrus. Western blot analysis revealed a reduction in hippocampal glucocorticoid receptor (GR) expression following the FST, which was reversed by propolis extract. Propolis extract also increased pGR(S220)/(S234) ratio by a differential phosphorylation in S220 and S234. FST-induced downregulation of cAMP-responsive element binding protein phosphorylation at S133 (pCREB) was restored by propolis extract, showing a strong and positive relationship between pCREB and pGR(S220)/(S234) ratio. These findings suggest that the propolis extract potentiates antidepressant-like activity by enhancing GR function which is one of the therapeutic mechanisms of antidepressant; thus, propolis extract may provide a novel therapy for depression.

9.
Behav Brain Res ; 236(1): 56-61, 2013 Jan 01.
Article in English | MEDLINE | ID: mdl-22940457

ABSTRACT

Excessive and prolonged secretion of adrenal glucocorticoids leads to a wide range of pathophysiological processes, including depression. Glucocorticoids, which act at glucocorticoid receptors (GR), are key regulators of the limbic hypothalamic-pituitary-adrenocortical (HPA) axis. In the present study, the antidepressant-like effects of the alcohol extract Cortex Mori Radicis (CMR) and its role in GR signalling were investigated. Male Wistar rats were administered CMR extract (50, 100, 200mg/kg, p.o.) daily for 5 days and then exposed to the forced swim test (FST). Behavioural analyses showed that CMR extract dose-dependently decreased immobility time during forced swimming. CMR extract also decreased the limbic HPA axis response to the FST, as indicated by an attenuated corticosterone response and decreased c-fos immunoreactivity in the dentate gyrus. Reduced hippocampal GR expression following exposure to the FST was reversed by CMR treatment. Moreover, a prominent increase in GR phosphorylation at S232 and a decrease at S246 were noted following treatment with CMR. This resulted in a high pGR(S232)/(S246) ratio. CMR treatment also produced a downregulation of serine/threonine protein phosphatase 5 levels, producing a strong negative relationship with pGR(S232). Taken together, our findings suggest that the alcohol extract CMR promotes antidepressant-like effects through bidirectional phosphorylation of GR at S232 and S246.


Subject(s)
Antidepressive Agents/pharmacology , Hippocampus/drug effects , Morus/chemistry , Receptors, Glucocorticoid/drug effects , Animals , Blotting, Western , Corticosterone/metabolism , Hindlimb Suspension/psychology , Hormone Antagonists/pharmacology , Immunohistochemistry , Male , Mifepristone/pharmacology , Motor Activity/drug effects , Nuclear Proteins/metabolism , Phosphoprotein Phosphatases/metabolism , Phosphorylation/drug effects , Plant Bark/chemistry , Plant Extracts/pharmacology , Plant Roots/chemistry , Proto-Oncogene Proteins c-fos/metabolism , Rats , Rats, Wistar , Swimming/psychology
10.
Fitoterapia ; 83(8): 1666-74, 2012 Dec.
Article in English | MEDLINE | ID: mdl-23022532

ABSTRACT

We observed neuroprotective effects of five major lipophilic diterpenes derived from Danshen (Radix Salvia miltiorrhiza) extract, such as cryptotanshinone (CTs), dihydrotanshinone I (DTsI), tanshinone I (TsI), tanshinone IIA (TsIIA) and tanshinone IIB (TsIIB), in the hippocampal CA1 region (CA1) against transient ischemic damage in gerbils. These diterpenes were administered 30min before ischemia-reperfusion and the animals were sacrificed 4days after ischemia-reperfusion. In the vehicle-treated-group, cresyl violet positive (CV(+)) cells and neuronal nuclei (NeuN)(+) neurons were significantly decreased in the CA1. However, in the TsI- and CTs-treated-ischemia-groups, CV(+) and NeuN(+) neurons were abundant in the CA1. In the other groups, the number of CV(+) and NeuN(+) neurons was less than the TsI- and CTs-treated-ischemia-groups. In addition, gliosis induced by ischemic damage was apparently blocked in the TsI- and CTs-treated-ischemia-groups. These results suggest that TsI and CTs among five major lipophilic diterpenes have strong potentials for neuroprotection against ischemic damage.


Subject(s)
Brain Ischemia/drug therapy , Diterpenes/pharmacology , Drugs, Chinese Herbal/chemistry , Neuroprotective Agents/pharmacology , Animals , Diterpenes/chemistry , Gene Expression Regulation , Gerbillinae , Hippocampus/cytology , Male , Molecular Structure , Nerve Tissue Proteins/genetics , Nerve Tissue Proteins/metabolism , Neurons/cytology , Neurons/drug effects , Neuroprotective Agents/chemistry , Reperfusion Injury/prevention & control , Salvia miltiorrhiza
SELECTION OF CITATIONS
SEARCH DETAIL