Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
1.
J Microbiol Biotechnol ; 34(3): 634-643, 2024 Mar 28.
Article in English | MEDLINE | ID: mdl-38111312

ABSTRACT

Juglans mandshurica Maxim. walnut (JMW) is well-known for the treatment of dermatosis, cancer, gastritis, diarrhea, and leukorrhea in Korea. However, the molecular mechanism underlying its anti-obesity activity remains unknown. In the current study, we aimed to determine whether JMW can influence adipogenesis in 3T3-L1 preadipocytes and high-fat diet rats and determine the antioxidant activity. The 20% ethanol extract of JMW (JMWE) had a total polyphenol content of 133.33 ± 2.60 mg GAE/g. Considering the antioxidant capacity, the ABTS and DPPH values of 200 µg/ml of JMWE were 95.69 ± 0.94 and 79.38 ± 1.55%, respectively. To assess the anti-obesity activity of JMWE, we analyzed the cell viability, fat accumulation, and adipogenesis-related factors, including CCAAT-enhancer-binding protein alpha (C/EBPα), sterol regulatory element-binding protein-1c (SREBP1c), peroxisome proliferator-activated receptor-gamma (PPARγ), fatty acid synthase (FAS), and acetyl-CoA carboxylase (ACC). We found that total lipid accumulation and triglyceride levels were reduced, and the fat accumulation rate decreased in a dose-dependent manner. Furthermore, JMWE suppressed adipogenesis-related factors C/EBPα, PPARγ, and SREBP1c, as well as FAS and ACC, both related to lipogenesis. Moreover, animal experiments revealed that JMWE could be employed to prevent and treat obesity-related diseases. Hence, JMWE could be developed as a healthy functional food and further explored as an anti-obesity drug.


Subject(s)
Anti-Obesity Agents , Juglans , Mice , Rats , Animals , Antioxidants/pharmacology , Antioxidants/metabolism , Juglans/metabolism , 3T3-L1 Cells , Diet, High-Fat/adverse effects , PPAR gamma/metabolism , Adipocytes , Obesity/drug therapy , Obesity/metabolism , Adipogenesis , Anti-Obesity Agents/chemistry , CCAAT-Enhancer-Binding Protein-alpha/metabolism , CCAAT-Enhancer-Binding Protein-alpha/pharmacology , CCAAT-Enhancer-Binding Protein-alpha/therapeutic use , Acetyl-CoA Carboxylase/metabolism , Plant Extracts/metabolism
2.
Genes Genomics ; 45(12): 1463-1474, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37837516

ABSTRACT

BACKGROUND: Δ9-Tetrahydrocannabinol (Δ9-THC) is a principal psychoactive extract of Cannabis sativa and has been traditionally used as palliative medicine for neuropathic pain. Cannabidiol (CBD), an extract of hemp species, has recently attracted increased attention as a cancer treatment, but Δ9-THC is also requiring explored pharmacological application. OBJECTIVE: This study evaluated the pharmacological effects of Δ9-THC in two human colorectal cancer cell lines. We investigated whether Δ9-THC treatment induces cell death in human colorectal cancer cells. METHODS: We performed an MTT assay to determine the pharmacological concentration of Δ9-THC. Annxein V and Western blot analysis confirmed that Δ9-THC induced apoptosis in colorectal cancer cells. Metabolic activity was evaluated using MitoTracker staining and ATP determination. We investigated vesicle formation by Δ9-THC treatment using GW9662, known as a PPARγ inhibitor. RESULTS: The MTT assay showed that treatment with 40 µM Δ9-THC and above inhibited the proliferation of colorectal cancer cells. Multiple intracytoplasmic vesicles were detected upon microscopic observation, and fluorescence-activated cell sorting analysis showed cell death via G1 arrest. Δ9-THC treatment increased the expression of cell death marker proteins, including p53, cleaved PARP-1, RIP1, and RIP3, suggesting that Δ9-THC induced the death of colorectal cancer cells. Δ9-THC treatment also reduced ATP production via changes in Bax and Bcl-2. Δ9-THC regulated intracytoplasmic vesicle formation by modulating the expression of PPARγ and clathrin, adding that antiproliferative activity of Δ9-THC was also affected. CONCLUSION: In conclusion, Δ9-THC regulated two functional mechanisms, intracellular vesicle formation and cell death. These findings can help to determine how cannabinoids can be used most effectively to improve the efficacy of cancer treatment.


Subject(s)
Cannabis , Colorectal Neoplasms , Humans , Dronabinol/pharmacology , PPAR gamma , Apoptosis , Colorectal Neoplasms/drug therapy , Plant Extracts , Adenosine Triphosphate
3.
J Vis Exp ; (183)2022 05 27.
Article in English | MEDLINE | ID: mdl-35695545

ABSTRACT

Industrial hemp (Cannabis spp.) has many compounds of interest with potential medical benefits. Of these compounds, cannabinoids have come to the center of attention, specifically acidic cannabinoids. The focus is turning toward acidic cannabinoids due to their lack of psychotropic activity. Cannabis plants produce acidic cannabinoids with hemp plants producing low levels of psychotropic cannabinoids. As such, utilization of hemp for acidic cannabinoid extraction would eliminate the need for decarboxylation prior to extraction as a source for the cannabinoids. The use of solvent-based extraction is ideal for obtaining acidic cannabinoids as their solubility in solvents such as supercritical CO2 is limited due to the high pressure and temperature required to reach their solubility constants. An alternative method designed to increase solubility is ultrasonic-assisted extraction. In this protocol, the impact of solvent polarity (acetonitrile 0.46, ethanol 0.65, methanol 0.76, and water 1.00) and concentration (20%, 50%, 70%, 90%, and 100%) on ultrasonic-assisted extraction efficiency has been examined. Results show that water was the least effective and acetonitrile was the most effective solvent examined. Ethanol was further examined since it has the lowest toxicity and is generally regarded as safe (GRAS). Surprisingly, 50% ethanol in water is the most effective ethanol concentration for extracting the highest amount of cannabinoids from hemp. The increase in cannabidiolic acid concentration was 28% when compared to 100% ethanol, and 23% when compared to 100% acetonitrile. While it was determined that 50% ethanol is the most effective concentration for our application, the method has also been demonstrated to be effective with alternative solvents. Consequently, the proposed method is deemed effective and rapid for extracting acidic cannabinoids.


Subject(s)
Cannabinoids , Cannabis , Hallucinogens , Acetonitriles , Biomass , Ethanol , Plant Extracts , Solvents , Ultrasonics , Water
4.
Article in English | MEDLINE | ID: mdl-33953788

ABSTRACT

Background and Objective. Epimedium koreanum Nakai is a medicinal plant known for its health beneficial effects on impotence, arrhythmia, oxidation, aging, osteoporosis, and cardiovascular diseases. However, there is no report available that shows its effects on platelet functions. Here, we elucidated antiplatelet and antithrombotic effects of ethyl acetate fraction of E. koreanum. Methodology. We analyzed the antiplatelet properties using standard in vitro and in vivo techniques, such as light transmission aggregometry, scanning electron microscopy, intracellular calcium mobilization measurement, dense granule secretion, and flow cytometry to assess integrin α IIb ß 3 activation, clot retraction, and Western blot, on washed platelets. The antithrombotic effects of E. koreanum were assessed by arteriovenous- (AV-) shunt model in rats, and its effects on hemostasis were analyzed by tail bleeding assay in mice. Key Results. E. koreanum inhibited platelet aggregation in agonist-stimulated human and rat washed platelets, and it also reduced calcium mobilization, ATP secretion, and TXB2 formation. Fibrinogen binding, fibronectin adhesion, and clot retraction by attenuated integrin α IIb ß 3-mediated inside-out and outside-in signaling were also decreased. Reduced phosphorylation of extracellular signal-regulated kinases (ERK), Akt, PLCγ2, and Src was observed. Moreover, the fraction inhibited thrombosis. HPLC results revealed that the fraction predominantly contained icariin. Conclusion and Implications. E. koreanum inhibited platelet aggregation and thrombus formation by attenuating calcium mobilization, ATP secretion, TXB2 formation, and integrin α IIb ß 3 activation. Therefore, it may be considered as a potential candidate to treat and prevent platelet-related cardiovascular disorders.

5.
Nat Prod Res ; 34(12): 1786-1790, 2020 Jun.
Article in English | MEDLINE | ID: mdl-30470128

ABSTRACT

Mulberry (Morus alba L.) root bark (MRB) was extracted using methanol and the extracts were subjected to tests of anti-inflammatory effects. The ethyl acetate fraction demonstrated the best anti-inflammatory effects. Purified compounds, sanggenon B, albanol B and sanggenon D, showed inhibitory effects on NO production in LPS-stimulated RAW264.7 cells and albanol B demonstrated the best anti-inflammatory effects. Regarding the underlying molecular mechanisms, further investigations showed that treatments with Albanol B reduced production of pro-inflammatory cytokines and decreased expression of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2). These results would contribute to development of novel anti-inflammatory drugs from MRB.


Subject(s)
Anti-Inflammatory Agents/isolation & purification , Morus/chemistry , Plant Bark/chemistry , Animals , Anti-Inflammatory Agents/chemistry , Anti-Inflammatory Agents/pharmacology , Benzofurans/isolation & purification , Chromones/isolation & purification , Cyclooxygenase 2 Inhibitors/isolation & purification , Cyclooxygenase 2 Inhibitors/pharmacology , Flavonoids/isolation & purification , Mice , Nitric Oxide Synthase Type II/antagonists & inhibitors , Plant Extracts/chemistry , Plant Extracts/pharmacology , RAW 264.7 Cells
6.
J Microbiol Biotechnol ; 30(1): 21-30, 2020 Jan 28.
Article in English | MEDLINE | ID: mdl-31838799

ABSTRACT

Natural products are widely used due to their various biological activities which include antiinflammatory, antioxidant, and anti-obesity effects. In this study, we determined the antioxidative and anti-obesity effects of Polygonum cuspidatum 50% ethanol extract (PEE). The antioxidative effect of PEE was evaluated using its radical scavenging activity, total phenolic content, and reducing power. The anti-obesity effect of PEE was investigated using 3T3-L1 adipocytes. The antioxidative activity of PEE was progressively increased in various concentrations, mainly due to the presence of phenolic compounds. PEE also alleviated lipid accumulation on 3T3-L1 adipocytes and downregulated the mRNA and protein production of adipogenesis-related (SREBP-1c, PPARγ, C/EBPα) and lipogenesis-related (aP2, FAS, ACC) markers. Furthermore, we found that the inhibitory effect on lipid accumulation via PEE was caused by the alleviation of NF-κB, p38 MAPK, ERK1/2, and JNK at the protein level. Taken together, our results imply that PEE is a potential antioxidant that can prevent obesityassociated disorders.


Subject(s)
Adipocytes/drug effects , Anti-Obesity Agents/pharmacology , Antioxidants/pharmacology , Fallopia japonica/chemistry , Lipid Metabolism/drug effects , Lipogenesis/drug effects , Plant Extracts/pharmacology , 3T3-L1 Cells , Adipogenesis/drug effects , Animals , Mice , Obesity/prevention & control
7.
Phytomedicine ; 40: 79-87, 2018 Feb 01.
Article in English | MEDLINE | ID: mdl-29496178

ABSTRACT

BACKGROUND AND PURPOSE: Sea weeds have been used since ancient times in Asian countries, especially in Korea, Japan, and China, as both edible sea vegetables and traditional medicinal tonics due to their health benefits. Eisenia bicyclis has been studied for anti-allergic and anti-cancer effects; however, its effects on the cardiovascular system, especially on platelet function, are yet to be explored. Therefore, we examined the effect of E. bicyclis on platelet function. STUDY DESIGN AND METHODS: E. bicyclis extract (EBE) was prepared and in vitro effects on ADP-induced platelet aggregation, granule secretion, intracellular calcium ion ([Ca2+]i) mobilization, fibrinogen binding to integrin αIIbß3 and clot retraction were evaluated. Phosphorylation levels of MAPK signaling molecules and P2Y12 receptor downstream signaling pathway components were studied. In vivo effects were studied using an arteriovenous (AV) shunt model. RESULTS: EBE markedly inhibited in vitro ADP-induced platelet aggregation, granule secretion (ATP release and P-selectin expression), [Ca2+]i mobilization, fibrinogen binding to integrin αIIbß3, and clot retraction; attenuated MAPK pathway activation; and inhibited phosphorylation of PI3K/Akt, PLCγ2, and Src. The extract significantly inhibited in vivo thrombus weight in an AV shunt model. CONCLUSION: E. bicyclis inhibits agonist-induced platelet activation and thrombus formation through modulation of the P2Y12 receptor downstream signaling pathway, suggesting its therapeutic potential in ethnomedicinal applications as an anti-platelet and anti-thrombotic compound to prevent cardiovascular diseases.


Subject(s)
Blood Platelets/drug effects , Fibrinolytic Agents/pharmacology , Phaeophyceae/chemistry , Platelet Aggregation/drug effects , Receptors, Purinergic P2Y12/metabolism , Thrombosis/drug therapy , Animals , Arteriovenous Shunt, Surgical , Blood Coagulation/drug effects , Blood Platelets/physiology , Male , P-Selectin/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Phospholipase C gamma/metabolism , Phosphorylation/drug effects , Plant Extracts/pharmacology , Platelet Activation/drug effects , Platelet Aggregation Inhibitors/pharmacology , Rats, Sprague-Dawley , Signal Transduction/drug effects , Thrombosis/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL