Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
J Appl Physiol (1985) ; 91(5): 2275-81, 2001 Nov.
Article in English | MEDLINE | ID: mdl-11641371

ABSTRACT

A double-blind randomized study was performed to evaluate the effect of oral ribose supplementation on repeated maximal exercise and ATP recovery after intermittent maximal muscle contractions. Muscle power output was measured during dynamic knee extensions with the right leg on an isokinetic dynamometer before (pretest) and after (posttest) a 6-day training period in conjunction with ribose (R, 4 doses/day at 4 g/dose, n = 10) or placebo (P, n = 9) intake. The exercise protocol consisted of two bouts (A and B) of maximal contractions, separated by 15 s of rest. Bouts A and B consisted of 15 series of 12 contractions each, separated by a 60-min rest period. During the training period, the subjects performed the same exercise protocol twice per day, with 3-5 h of rest between exercise sessions. Blood samples were collected before and after bouts A and B and 24 h after bout B. Knee-extension power outputs were approximately 10% higher in the posttest than in the pretest but were similar between P and R for all contraction series. The exercise increased blood lactate and plasma ammonia concentrations (P < 0.05), with no significant differences between P and R at any time. After a 6-wk washout period, in a subgroup of subjects (n = 8), needle-biopsy samples were taken from the vastus lateralis before, immediately after, and 24 h after an exercise bout similar to the pretest. ATP and total adenine nucleotide content were decreased by approximately 25 and 20% immediately after and 24 h after exercise in P and R. Oral ribose supplementation with 4-g doses four times a day does not beneficially impact on postexercise muscle ATP recovery and maximal intermittent exercise performance.


Subject(s)
Adenosine Triphosphate/biosynthesis , Exercise/physiology , Ribose/pharmacology , Adenine Nucleotides/pharmacology , Adult , Ammonia/blood , Blood Glucose/metabolism , Diet , Double-Blind Method , Humans , Knee/physiology , Lactic Acid/blood , Male , Muscle, Skeletal/drug effects , Muscle, Skeletal/metabolism , Oxygen Consumption/drug effects , Physical Fitness/physiology
2.
J Physiol ; 536(Pt 2): 625-33, 2001 Oct 15.
Article in English | MEDLINE | ID: mdl-11600695

ABSTRACT

1. We investigated the effect of oral creatine supplementation during leg immobilization and rehabilitation on muscle volume and function, and on myogenic transcription factor expression in human subjects. 2. A double-blind trial was performed in young healthy volunteers (n = 22). A cast was used to immobilize the right leg for 2 weeks. Thereafter the subjects participated in a knee-extension rehabilitation programme (3 sessions x week(-1), 10 weeks). Half of the subjects received creatine monohydrate (CR; from 20 g down to 5 g daily), whilst the others ingested placebo (P; maltodextrin). 3. Before and after immobilization, and after 3 and 10 weeks of rehabilitation training, the cross-sectional area (CSA) of the quadriceps muscle was assessed by NMR imaging. In addition, an isokinetic dynamometer was used to measure maximal knee-extension power (Wmax), and needle biopsy samples taken from the vastus lateralis muscle were examined to asses expression of the myogenic transcription factors MyoD, myogenin, Myf5, and MRF4, and muscle fibre diameters. 4. Immobilization decreased quadriceps muscle CSA (approximately 10 %) and Wmax (approximately 25 %) by the same magnitude in both groups. During rehabilitation, CSA and Wmax recovered at a faster rate in CR than in P (P < 0.05 for both parameters). Immobilization changed myogenic factor protein expression in neither P nor CR. However, after rehabilitation myogenin protein expression was increased in P but not in CR (P < 0.05), whilst MRF4 protein expression was increased in CR but not in P (P < 0.05). In addition, the change in MRF4 expression was correlated with the change in mean muscle fibre diameter (r = 0.73, P < 0.05). 5. It is concluded that oral creatine supplementation stimulates muscle hypertrophy during rehabilitative strength training. This effect may be mediated by a creatine-induced change in MRF4 and myogenin expression.


Subject(s)
Creatine/administration & dosage , DNA-Binding Proteins , Immobilization/physiology , Muscle Proteins/metabolism , Muscle, Skeletal/metabolism , Muscle, Skeletal/pathology , Recovery of Function/drug effects , Trans-Activators , Adenosine Triphosphate/metabolism , Administration, Oral , Adult , Atrophy , Body Weight , Creatine/analysis , Double-Blind Method , Exercise Therapy , Female , Humans , Male , Muscle Fibers, Skeletal/chemistry , Muscle Fibers, Skeletal/metabolism , MyoD Protein/metabolism , Myogenic Regulatory Factor 5 , Myogenic Regulatory Factors/metabolism , Myogenin/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL