Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Biomolecules ; 13(8)2023 07 26.
Article in English | MEDLINE | ID: mdl-37627233

ABSTRACT

The vast pool of structurally and functionally distinct secondary metabolites (i.e., natural products (NPs)) is constantly being expanded, a process also driven by the rapid progress in the development of analytical techniques. Such NPs often show potent biological activities and are therefore prime candidates for drug development and medical applications. The ethyl acetate extract of the tuber of Citrullus naudinianus (C. naudinianus), an African melon with edible fruits and seeds, shows in vitro immunomodulatory activity presumably elicited by cucurbitacins that are known major constituents of this plant. Further potentially immunomodulatory cucurbitacins or cucurbitacin derivatives were assumed to be in the tuber. Given the typically high content of cucurbitacins with similar physicochemical features but often distinct bioactivities, an efficient and reliable separation process is a prerequisite for their detailed characterization and assessment in terms of bioactivity. We therefore developed a detection method to screen and differentiate cucurbitacins via high-performance liquid chromatography/quadrupole-time-of-flight tandem mass spectrometry (HPLC-QTOF-MS/MS). In order to confirm the identification, the fragmentation patterns of two cucurbitacins and one 23,24-dihydrocucurbitacin were also investigated. Six characteristic fragments were identified and three of them were employed for the identification of cucurbitacins and 23,24-dihydrocucurbitacins in the extract. As a result, in addition to eight previously reported cucurbitacins from this plant four distinct 23,24-dihydrocucurbitacins (B, D, E, and I) were putatively identified and newly found in the ethyl acetate extract of the tuber of C. naudinianus. The established methodology enables rapid and efficient LC-MS-based analysis and identification of cucurbitacins and 23,24-dihydrocucurbitacins in plant extracts.


Subject(s)
Biological Products , Citrullus , Cucurbitacins , Tandem Mass Spectrometry
2.
Int J Mol Sci ; 22(18)2021 Sep 18.
Article in English | MEDLINE | ID: mdl-34576273

ABSTRACT

Vancomycin is a glycopeptide antibiotic used against multi-drug resistant gram-positive bacteria such as Staphylococcus aureus (MRSA). Although invaluable against resistant bacteria, vancomycin harbors adverse drug reactions including cytopenia, ototoxicity, as well as nephrotoxicity. Since nephrotoxicity is a rarely occurring side effect, its mechanism is incompletely understood. Only recently, the actual clinically relevant concentration the in kidneys of patients receiving vancomycin was investigated and were found to exceed plasma concentrations by far. We applied these clinically relevant vancomycin concentrations to murine and canine renal epithelial cell lines and assessed metabolic and lipidomic alterations by untargeted and targeted gas chromatography-mass spectrometry and liquid chromatography-mass spectrometry analyses. Despite marked differences in the lipidome, both cell lines increased anabolic glucose reactions, resulting in higher sorbitol and lactate levels. To the best of our knowledge, this is the first endometabolic profiling of kidney cells exposed to clinically relevant vancomycin concentrations. The presented study will provide a valuable dataset to nephrotoxicity researchers and might add to unveiling the nephrotoxic mechanism of vancomycin.


Subject(s)
Kidney/drug effects , Lipidomics , Vancomycin/pharmacology , Animals , Anti-Bacterial Agents/pharmacology , Chromatography, Liquid , Dogs , Dose-Response Relationship, Drug , Drug Evaluation, Preclinical , Gas Chromatography-Mass Spectrometry , Glutathione/metabolism , Kidney Tubules, Collecting/metabolism , Lipids/chemistry , Madin Darby Canine Kidney Cells , Mass Spectrometry , Metabolomics , Methicillin-Resistant Staphylococcus aureus/drug effects , Mice , Staphylococcal Infections/drug therapy
SELECTION OF CITATIONS
SEARCH DETAIL