Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Biophys Chem ; 309: 107233, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38579435

ABSTRACT

Emodin is a natural anthraquinone derivative found in nature, widely known as an herbal medicine. Here, the partition, location, and interaction of emodin with lipid membranes of 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) are experimentally investigated with different techniques. Our studies have considered the neutral form of emodin (EMH) and its anionic/deprotonated form (EM-), and their interaction with a more and less packed lipid membrane, DMPC at the gel and fluid phases, respectively. Though DSC results indicate that the two species, EMH and EM-, similarly disrupt the packing of DMPC bilayers, spin labels clearly show that EMH causes a stronger bilayer disruption, both in gel and fluid DMPC. Fluorescence spectroscopy shows that both EMH and EM- have a high affinity for DMPC: the binding of EM- to both gel and fluid DMPC bilayers was found to be quite similar, and similar to that of EMH to gel DMPC, Kp = (1.4 ± 0.3)x103. However, EMH was found to bind twice more strongly to fluid DMPC bilayers, Kp = (3.2 ± 0.3)x103. Spin labels and optical absorption spectroscopy indicate that emodin is located close to the lipid bilayer surface, and suggest that EM- is closer to the lipid/water interface than EMH, as expected. The present studies present a relevant contribution to the current understanding of the effect the two species of emodin, EMH and EM-, present on different microregions of an organism, as local pH values can vary significantly, can cause in a neutral lipid membrane, either more or less packed, liked gel and fluid DMPC, respectively, and could be extended to lipid domains of biological membranes.


Subject(s)
Emodin , Dimyristoylphosphatidylcholine/chemistry , Lipid Bilayers/chemistry , Spin Labels
2.
Langmuir ; 27(16): 10041-9, 2011 Aug 16.
Article in English | MEDLINE | ID: mdl-21732628

ABSTRACT

The synthetic lipid 1,2-dimyristoyl-sn-3-phosphoglycerol (DMPG), when dispersed in water/NaCl exhibits a complex phase behavior caused by its almost unlimited swelling in excess water. Using deuterium ((2)H)- and phosphorus ((31)P)-NMR we have studied the molecular properties of DMPG/water/NaCl dispersions as a function of lipid and NaCl concentration. We have measured the order profile of the hydrophobic part of the lipid bilayer with deuterated DMPG while the orientation of the phosphoglycerol headgroup was deduced from the (31)P NMR chemical shielding anisotropy. At temperatures >30 °C we observe well-resolved (2)H- and (31)P NMR spectra not much different from other liquid crystalline bilayers. From the order profiles it is possible to deduce the average length of the flexible fatty acyl chain. Unusual spectra are obtained in the temperature interval of 20-25 °C, indicating one or several phase transitions. The most dramatic changes are seen at low lipid concentration and low ionic strength. Under these conditions and at 25 °C, the phosphoglycerol headgroup rotates into the hydrocarbon layer and the hydrocarbon chains show larger flexing motions than at higher temperatures. The orientation of the phosphoglycerol headgroup depends on the bilayer surface charge and correlates with the degree of dissociation of DMPG-Na(+). The larger the negative surface charge, the more the headgroup rotates toward the nonpolar region.


Subject(s)
Deuterium/chemistry , Lipid Bilayers/chemistry , Magnetic Resonance Spectroscopy/methods , Phosphatidylglycerols/chemistry , Phosphorus/chemistry , Calorimetry, Differential Scanning , Chromatography, Thin Layer
SELECTION OF CITATIONS
SEARCH DETAIL