Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters

Complementary Medicines
Database
Language
Affiliation country
Publication year range
1.
Mol Neurobiol ; 57(8): 3307-3333, 2020 Aug.
Article in English | MEDLINE | ID: mdl-32519243

ABSTRACT

Research on energy homeostasis has focused on neuronal signaling; however, the role of glial cells has remained little explored. Glial endozepines exert anorexigenic actions by mechanisms which remain poorly understood. In this context, the present study was designed to decipher the mechanisms underlying the anorexigenic action of endozepines and to investigate their potential curative effect on high-fat diet-induced obesity. We carried out a combination of physiological, pharmacological, and molecular analyses together to dissect the underlying mechanisms of endozepine-induced hypophagia. To evaluate the potential anti-obesity effect of endozepines, different model of obesity were used, i.e., ob/ob and diet-induced obese mice. We show that the intracerebral administration of endozepines enhances satiety by targeting anorexigenic brain circuitry and induces STAT3 phosphorylation, a hallmark of leptin signaling. Strikingly, endozepines are entirely ineffective at reducing food intake in the presence of a circulating leptin antagonist and in leptin-deficient mice (ob/ob) but potentiate the reduced food intake and weight loss induced by exogenous leptin administration in these animals. Endozepines reversed high fat diet-induced obesity by reducing food intake and restored leptin-induced STAT3 phosphorylation in the hypothalamus. Interestingly, we observed that glucose and insulin synergistically enhance tanycytic endozepine expression and release. Finally, endozepines, which induce ERK activation necessary for leptin transport into the brain in cultured tanycytes, require tanycytic leptin receptor expression to promote STAT3 phosphorylation in the hypothalamus. Our data identify endozepines as potential anti-obesity compounds in part through the modulation of the LepR-ERK-dependent tanycytic leptin shuttle.


Subject(s)
Diazepam Binding Inhibitor/metabolism , Diet, High-Fat , Hypothalamus/metabolism , Leptin/metabolism , Neuroglia/metabolism , Obesity/metabolism , Animals , Eating/physiology , Energy Metabolism/physiology , Homeostasis/physiology , Leptin/genetics , Male , Mice, Inbred C57BL , Mice, Obese
2.
Shock ; 45(6): 653-9, 2016 06.
Article in English | MEDLINE | ID: mdl-26796573

ABSTRACT

BACKGROUND: The mechanisms involved in septic anorexia are mainly related to the secretion of inflammatory cytokines. The term endozepines designates a family of neuropeptides, including the octadecaneuropeptide (ODN), originally isolated as endogenous ligands of benzodiazepine receptors. Previous data showed that ODN, produced and released by astrocytes, is a potent anorexigenic peptide. We have studied the effect of sepsis by means of a model of cecal ligation and puncture (CLP) on the hypothalamic expression of endozepines (DBI mRNA and protein levels), as well as on the level of neuropeptides controlling energy homeostasis mRNAs: pro-opiomelanocortin, neuropeptide Y, and corticotropin-releasing hormone. In addition, we have investigated the effects of two inflammatory cytokines, TNF-α and IL-1ß, on DBI mRNA levels in cultured rat astrocytes. METHODS: Studies were performed on Sprague-Dawley male rats and on cultures of rat cortical astrocytes. Sepsis was induced using the CLP method. Sham-operated control animals underwent the same procedure, but the cecum was neither ligated nor incised. RESULTS: Sepsis caused by CLP evoked an increase of DBI mRNA levels in ependymal cells bordering the third ventricle and in tanycytes of the median eminence. CLP-induced sepsis was also associated with stimulated ODN-like immunoreactivity (ODN-LI) in the hypothalamus. In addition, TNF-α, but not IL-1ß, induced a dose-dependent increase in DBI mRNA in cultured rat astrocytes. An increase in the mRNA encoding the precursor of the anorexigenic peptide α-melanocyte stimulating hormone, the pro-opiomelanocortin, and the corticotropin-releasing hormone was observed in the hypothalamus. CONCLUSION: These results suggest that during sepsis, hypothalamic mRNA encoding endozepines, anorexigenic peptide as well as stress hormone could play a role in the anorexia/cachexia associated with inflammation due to sepsis and we suggest that this hypothalamic mRNA expression could involve TNF-α.


Subject(s)
Diazepam Binding Inhibitor/metabolism , Receptors, GABA-A/metabolism , Sepsis/blood , Sepsis/diagnosis , Animals , Anorexia/metabolism , Corticotropin-Releasing Hormone/blood , Diazepam Binding Inhibitor/blood , Disease Models, Animal , Hypothalamus/metabolism , In Vitro Techniques , Inflammation/blood , Inflammation/diagnosis , Interleukin-18/blood , Ligands , Male , Neuropeptide Y/blood , Neuropeptides/blood , Peptide Fragments/blood , Pro-Opiomelanocortin/blood , Rats , Rats, Sprague-Dawley , Sepsis/metabolism , Tumor Necrosis Factor-alpha/blood
3.
Diabetes ; 62(3): 801-10, 2013 Mar.
Article in English | MEDLINE | ID: mdl-23160530

ABSTRACT

Hypothalamic glucose sensing is involved in the control of feeding behavior and peripheral glucose homeostasis, and glial cells are suggested to play an important role in this process. Diazepam-binding inhibitor (DBI) and its processing product the octadecaneuropeptide (ODN), collectively named endozepines, are secreted by astroglia, and ODN is a potent anorexigenic factor. Therefore, we investigated the involvement of endozepines in brain glucose sensing. First, we showed that intracerebroventricular administration of glucose in rats increases DBI expression in hypothalamic glial-like tanycytes. We then demonstrated that glucose stimulates endozepine secretion from hypothalamic explants. Feeding experiments indicate that the anorexigenic effect of central administration of glucose was blunted by coinjection of an ODN antagonist. Conversely, the hyperphagic response elicited by central glucoprivation was suppressed by an ODN agonist. The anorexigenic effects of centrally injected glucose or ODN agonist were suppressed by blockade of the melanocortin-3/4 receptors, suggesting that glucose sensing involves endozepinergic control of the melanocortin pathway. Finally, we found that brain endozepines modulate blood glucose levels, suggesting their involvement in a feedback loop controlling whole-body glucose homeostasis. Collectively, these data indicate that endozepines are a critical relay in brain glucose sensing and potentially new targets in treatment of metabolic disorders.


Subject(s)
Appetite Regulation , Diazepam Binding Inhibitor/metabolism , Feedback, Physiological , Glucose/metabolism , Hypothalamus/metabolism , Neuroglia/metabolism , Neuropeptides/metabolism , Peptide Fragments/metabolism , Animals , Appetite Depressants/administration & dosage , Appetite Depressants/pharmacology , Appetite Regulation/drug effects , Appetite Stimulants/administration & dosage , Appetite Stimulants/pharmacology , Appetitive Behavior/drug effects , Arcuate Nucleus of Hypothalamus/cytology , Arcuate Nucleus of Hypothalamus/drug effects , Arcuate Nucleus of Hypothalamus/metabolism , Diazepam Binding Inhibitor/agonists , Diazepam Binding Inhibitor/antagonists & inhibitors , Feedback, Physiological/drug effects , Gene Expression Regulation/drug effects , Glucose/administration & dosage , Hypothalamus/cytology , Hypothalamus/drug effects , Injections, Intraventricular , Male , Nerve Tissue Proteins/agonists , Nerve Tissue Proteins/antagonists & inhibitors , Nerve Tissue Proteins/metabolism , Neuroglia/drug effects , Neuropeptides/antagonists & inhibitors , Peptide Fragments/antagonists & inhibitors , Protein Processing, Post-Translational , Rats , Rats, Wistar , Receptors, Melanocortin/antagonists & inhibitors , Receptors, Melanocortin/metabolism , Synaptic Transmission/drug effects , Tissue Culture Techniques
SELECTION OF CITATIONS
SEARCH DETAIL