Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters

Therapeutic Methods and Therapies TCIM
Database
Type of study
Language
Publication year range
1.
Curr Gene Ther ; 23(2): 81-95, 2023.
Article in English | MEDLINE | ID: mdl-36111754

ABSTRACT

Hemophilia A, a single gene disorder leading to deficient Factor VIII (FVIII), is a suitable candidate for gene therapy. The aspiration is for single administration of a genetic therapy that would allow the production of endogenous FVIII sufficient to restore hemostasis and other biological processes. This would potentially result in reliable protection from bleeding and its associated physical and emotional impacts. Gene therapy offers the possibility of a clinically relevant improvement in disease phenotype and transformational improvement in quality of life, including an opportunity to engage in physical activities more confidently. Gene therapy products for hemophilia A in advanced clinical development use adeno-associated viral (AAV) vectors and a codon-optimized B-domain deleted FVIII transgene. However, the different AAV-based gene therapies have distinct design features, such as choice of vector capsid, enhancer and promoter regions, FVIII transgene sequence and manufacturing processes. These, in turn, impact patient eligibility, safety and efficacy. Ideally, gene therapy technology for hemophilia A should offer bleed protection, durable FVIII expression, broad eligibility and limited response variability between patients, and long-term safety. However, several limitations and challenges must be overcome. Here, we introduce the characteristics of the BAY 2599023 (AAVhu37.hFVIIIco, DTX 201) gene therapy product, including the low prevalence in the general population of anti-AAV-hu37 antibodies, as well as other gene therapy AAV products and approaches. We will examine how these can potentially meet the challenges of gene therapy, with the ultimate aim of improving the lives of patients with hemophilia A.


Subject(s)
Hemophilia A , Animals , Humans , Dependovirus/genetics , Genetic Therapy , Hemophilia A/genetics , Hemophilia A/therapy , Quality of Life
2.
Mol Cancer Ther ; 16(5): 893-904, 2017 05.
Article in English | MEDLINE | ID: mdl-28292941

ABSTRACT

C4.4A (LYPD3) has been identified as a cancer- and metastasis-associated internalizing cell surface protein that is expressed in non-small cell lung cancer (NSCLC), with particularly high prevalence in the squamous cell carcinoma (SCC) subtype. With the exception of skin keratinocytes and esophageal endothelial cells, C4.4A expression is scarce in normal tissues, presenting an opportunity to selectively treat cancers with a C4.4A-directed antibody-drug conjugate (ADC). We have generated BAY 1129980 (C4.4A-ADC), an ADC consisting of a fully human C4.4A-targeting mAb conjugated to a novel, highly potent derivative of the microtubule-disrupting cytotoxic drug auristatin via a noncleavable alkyl hydrazide linker. In vitro, C4.4A-ADC demonstrated potent antiproliferative efficacy in cell lines endogenously expressing C4.4A and inhibited proliferation of C4.4A-transfected A549 lung cancer cells showing selectivity compared with a nontargeted control ADC. In vivo, C4.4A-ADC was efficacious in human NSCLC cell line (NCI-H292 and NCI-H322) and patient-derived xenograft (PDX) models (Lu7064, Lu7126, Lu7433, and Lu7466). C4.4A expression level correlated with in vivo efficacy, the most responsive being the models with C4.4A expression in over 50% of the cells. In the NCI-H292 NSCLC model, C4.4A-ADC demonstrated equal or superior efficacy compared to cisplatin, paclitaxel, and vinorelbine. Furthermore, an additive antitumor efficacy in combination with cisplatin was observed. Finally, a repeated dosing with C4.4A-ADC was well tolerated without changing the sensitivity to the treatment. Taken together, C4.4A-ADC is a promising therapeutic candidate for the treatment of NSCLC and other cancers expressing C4.4A. A phase I study (NCT02134197) with the C4.4A-ADC BAY 1129980 is currently ongoing. Mol Cancer Ther; 16(5); 893-904. ©2017 AACR.


Subject(s)
Antibodies, Monoclonal/administration & dosage , Carcinoma, Non-Small-Cell Lung/drug therapy , Cell Adhesion Molecules/immunology , Immunoconjugates/administration & dosage , Aminobenzoates/chemistry , Aminobenzoates/immunology , Animals , Antibodies, Monoclonal/immunology , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/immunology , Cell Adhesion Molecules/antagonists & inhibitors , Cell Line, Tumor , Cisplatin/administration & dosage , Cisplatin/immunology , GPI-Linked Proteins/antagonists & inhibitors , GPI-Linked Proteins/immunology , Humans , Immunoconjugates/chemistry , Immunoconjugates/immunology , Mice , Oligopeptides/chemistry , Oligopeptides/immunology , Paclitaxel/administration & dosage , Paclitaxel/immunology , Vinblastine/administration & dosage , Vinblastine/analogs & derivatives , Vinblastine/immunology , Vinorelbine , Xenograft Model Antitumor Assays
3.
Drugs Today (Barc) ; 45(7): 483-96, 2009 Jul.
Article in English | MEDLINE | ID: mdl-19834626

ABSTRACT

Tapentadol exerts its analgesic effects through micro opioid receptor agonism and noradrenaline reuptake inhibition in the central nervous system. Preclinical studies demonstrated that tapentadol is effective in a broad range of pain models, including nociceptive, inflammatory, visceral, mono- and polyneuropathic models. Moreover, clinical studies showed that tapentadol effectively relieves moderate to severe pain in various pain care settings. In addition, it was reported to be associated with significantly fewer treatment discontinuations due to a significantly lower incidence of gastrointestinal-related adverse events compared with equivalent doses of oxycodone. The combination of these reduced treatment discontinuation rates and tapentadol efficacy for the relief of moderate to severe nociceptive and neuropathic pain may offer an improvement in pain therapy by increasing patient compliance with their treatment regimen.


Subject(s)
Analgesics/pharmacology , Pain/drug therapy , Phenols/pharmacology , Adrenergic Uptake Inhibitors/adverse effects , Adrenergic Uptake Inhibitors/pharmacology , Adrenergic Uptake Inhibitors/therapeutic use , Analgesics/adverse effects , Analgesics/therapeutic use , Animals , Clinical Trials as Topic , Drug Evaluation, Preclinical , Humans , Phenols/adverse effects , Phenols/therapeutic use , Receptors, Opioid, mu/agonists , Tapentadol
SELECTION OF CITATIONS
SEARCH DETAIL