Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
1.
Food Chem ; 439: 138161, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38070233

ABSTRACT

In this work, the biological properties of fractionated Riceberry bran protein hydrolysate obtained by ultrafiltration (URBPH) were evaluated and the possibility of using cluster dextrin to produce hydrolysate powder by spray-drying was investigated. Fractionation into peptides < 3 kDa was observed to improve antioxidant activity. URBPH < 3 kDa was then freeze-dried (FD-URBPH) and spray-dried (SD-URBPH) at different inlet air temperatures of 100-160 °C. The water solubility and antioxidant activity of FD-URBPH were higher than those of SD-URBPH. Nevertheless, encapsulation of hydrolysate with 10% cluster dextrin and an inlet temperature of 120 °C was also successful in maintaining protein qualities, which showed high 2,2'-azino-bis 3-ethylbenzthiazoline-6-sulfonic (ABTS•+) scavenging activity (89.14%) and water solubility index (92.49%) and low water activity (aw = 0.53). Moreover, encapsulation preserved the antioxidant activity of peptides during gastrointestinal digestion better than the free form. URBPH and its spray-dried microcapsules could be used as bioactive ingredients in functional drinks or foods.


Subject(s)
Antioxidants , Protein Hydrolysates , Antioxidants/chemistry , Bromelains , Powders , Dextrins , Peptides , Water
2.
Food Chem ; 393: 133315, 2022 Nov 01.
Article in English | MEDLINE | ID: mdl-35653998

ABSTRACT

Physicochemical and in vitro protein digestibility of alginate/calcium (AC) restructured pork steak hydrolyzed with bromelain with addition of LA gellan, LM pectin and κ-carrageenan at various concentrations (0.5, 1.0, 1.5 and 2% w/w) was evaluated for masticatory dysfunction people. The AC samples with κ-carrageenan showed the lowest cooking losses and highest water holding capacity (WHC). Moreover, addition of κ-carrageenan showed the highest Kramer shear force (KSF) and higher hardness, cohesiveness, springiness, chewiness, and gumminess, but the adhesiveness value was lower than those of the other treatments. According to SEM, the gel network of AC samples with κ-carrageenan was more clearly than those with the other treatments. FTIR demonstrated that the addition of polysaccharides to AC sample enhanced the hydrogen bonds in the gel system. For in vitro protein digestibility results, addition of 0.5% (w/w) LA gellan and κ-carrageenan samples showed the highest pepsin (73-74%) and trypsin (79-80%) digestibility.


Subject(s)
Pork Meat , Red Meat , Alginates , Animals , Bromelains , Calcium , Carrageenan/chemistry , Chemical Phenomena , Colloids , Humans , Pectins , Polysaccharides, Bacterial , Proteins , Swine
3.
Food Chem ; 361: 130079, 2021 Nov 01.
Article in English | MEDLINE | ID: mdl-34033991

ABSTRACT

Enzymatic tenderisation including bromelain enhances underused cuts of meat in emerged restructuring technology. Physicochemical and textural characteristics of restructured pork steak hydrolysed with bromelain for masticatory dysfunction people were evaluated. Restructured pork steak treated with bromelain at 0.05 and 0.1% (w/w) was hydrolysed at 50 °C for 0, 3, 6, 9 and 12 min. The cooking losses of 0.05% (w/w) bromelain for 0, 3 and 6 min were lower than 0.1% (w/w) bromelain samples. The ΔE increased after increasing the enzyme concentration and hydrolysis time. Bromelain-treated samples at higher concentrations showed lower WBSF, KSF and TPA parameters, but cohesiveness of 0.05% (w/w) had higher than 0.1% (w/w) bromelain samples. Total protein, sarcoplasmic protein solubility, TCA-soluble peptide, total collagen and soluble collagen contents were the highest in 0.1% (w/w) bromelain-treated samples for 12 min (P < 0.05). According to SDS-PAGE and SEM, various proteins in the enzyme-treated samples were degraded.


Subject(s)
Bromelains/chemistry , Pork Meat/analysis , Animals , Chemical Phenomena , Collagen/chemistry , Cooking , Hydrolysis , Solubility , Swine
4.
Molecules ; 26(6)2021 Mar 10.
Article in English | MEDLINE | ID: mdl-33802127

ABSTRACT

The aim of this work was to characterize the antioxidant properties of some of the peptides present in bromelain mung bean meal protein hydrolysate (MMPH). The MMPH was subjected to two rounds of bioassay-guided reversed-phase HPLC separation followed by peptide identification in the most potent fractions using tandem mass spectrometry. Twelve antioxidant peptides, namely, HC, CGN, LAN, CTN, LAF, CSGD, MMGW, QFAAD, ERF, EYW, FLQL, and QFAW were identified and assayed for antioxidant properties. CTN, HC, CGN, and CSGD were the most potent (p < 0.05) DPPH radical scavengers with EC50 values of 0.30, 0.29, 0.28, and 0.30 mg/mL, respectively, which are lower than the 0.03 mg/mL obtained for reduced glutathione (GSH). CTN, HC, CGN, and CSGD exhibited the most potent (p < 0.05) scavenging activities against hydroxyl and superoxide radicals with EC50 values that are similar to those of GSH. The cysteine-containing peptides also had stronger ferric reducing antioxidant power and metal chelation activity than peptides devoid of cysteine. In contrast, MMGW, ERF, and EYW had poor radical scavenging and metal chelation activities. We conclude that the availability of the sulfhydryl group may have enhanced antioxidant potency while the presence of bulky groups such phenylalanine and tryptophan had an opposite effect.


Subject(s)
Peptides/chemistry , Vigna/enzymology , Vigna/metabolism , Antioxidants/chemistry , Antioxidants/isolation & purification , Chelating Agents , Chromatography, High Pressure Liquid/methods , Free Radical Scavengers/chemistry , Glutathione/metabolism , Hydroxyl Radical , Lipid Peroxidation , Protein Hydrolysates/chemistry , Proteins/chemistry , Superoxides/chemistry
5.
J Food Sci ; 85(3): 707-717, 2020 Mar.
Article in English | MEDLINE | ID: mdl-32043604

ABSTRACT

This study evaluated the biological properties of peptides from brown rice protein hydrolyzed by bromelain (eb-RPH) in relation to flavor characteristic. The fractionation into peptides < 1 kDa was observed to improve the DPPH, ABTS, and hydroxyl radical-scavenging activities (0.19, 2.28, and 24.64 mM Trolox, respectively), angiotensin-converting enzyme (ACE)-inhibitory activity (IC50 value of 0.20 ± 0.011 mg protein/mL), as well as bitter and umami tastes. The < 1 kDa fraction was further analyzed by liquid chromatography-electrospray ionization/mass spectrometry to identify amino acid sequence associated with biological activities and flavor characteristics. Eight peptides were identified. Most of the identified peptides contained features of previously reported ACE inhibitory and antioxidant peptides, especially peptide FGGSGGPGG and FGGGGAGAGG. Evaluation of flavor characteristics using BIOPEP database demonstrated that they had high occurrence frequencies of umami peptides (ESDVVSDL, GSGVGGAK, and SSVGGGSAG) and low Q-value (938.75 to 282.22), suggesting that these peptides may be used as a fortifying health ingredient with good taste. PRACTICAL APPLICATION: The fractionated brown rice protein hydrolysate (< 1 kDa) has the potential to serve as a functional food ingredient in nutraceutical food and beverage products that can provide health benefits with good taste. Information on amino acid composition and spatial conformation of peptide may aid us to better understand the molecular mechanisms involved in bioactivities and flavor of brown rice peptide for industrial applications.


Subject(s)
Bromelains/chemistry , Flavoring Agents/chemistry , Oryza/chemistry , Peptides/chemistry , Amino Acid Sequence , Angiotensin-Converting Enzyme Inhibitors/chemistry , Antioxidants/chemistry , Chromatography, Liquid , Hydrolysis , Plant Proteins/chemistry , Protein Hydrolysates/chemistry , Spectrometry, Mass, Electrospray Ionization
6.
PeerJ ; 6: e5337, 2018.
Article in English | MEDLINE | ID: mdl-30065890

ABSTRACT

BACKGROUND: Bioactive peptides can prevent damage associated with oxidative stress in humans when consumed regularly. Recently, peptides have attracted immense interest because of their beneficial functional properties, safety and little or no side effects when used at high concentration. Most antioxidant peptides are small in size, less than 1 kDa, and contains a high proportion of hydrophobic amino acid. Particularly, tyrosine, leucine, alanine, isoleucine, valine, lysine, phenyalanine, cysteine, methionine and histidine in peptide chain exhibited high antioxidant activity. Mungbean meal protein (MMP) is highly abundant in hydrophobic amino acids. It indicated that MMP might be a good source of antioxidants. Therefore, the objectives were to optimize the conditions used to generate mungbean meal protein hydrolysate (MMPH) with antioxidant activity from bromelain and to investigate the antioxidant activities of different molecular weight (MW) peptide fraction. METHODS: Response Surface Methodology (RSM) was used for screening of the optimal conditions to produce MMPH. After that MMPH was fractionated using ultrafiltration membranes with different MW distributions. Crude-MMPH and four fractions were investigated for five antioxidant activities: 2,2,1-diphenyl-1-picrylhydrazyl (DPPH), hydroxyl, superoxide, ferric reducing antioxidant power (FRAP) and metal ion chelation activity. RESULTS: The optimal condition to produce the MMPH was 15% (w/w) of bromelain and hydrolysis time for 12 h which showed the greatest DPPH and ABTS radical scavenging activity. After mungbean protein from optimal condition was separated based on different molecular weight, the DPPH radical scavenging activity was the highest for the F4 (less than 1 kDa) peptide fraction. Metal ion chelating activity was generally weak, except for the F4 that had a value of 43.94% at a protein concentration of 5 mg/mL. The F4 also exhibited high hydroxyl and superoxide activities (54 and 65.1%), but moderate activity for ferric reducing antioxidant power (0.102 mmole Fe2+/g protein) compared to other peptide fractions and crude-MMPH. Molecular weight and amino acid were the main factors that determined the antioxidant activities of these peptide fractions. Results indicated that F4 had strong antioxidant potentials. DISCUSSION: The lowest MW fraction (less than 1 kDa) contributed to the highest DPPH, superoxide, hydroxyl and metal chelation activity because influence of low MW and high content of hydrophobic amino acid in peptide chain. Results from this study indicated that MMPH peptides donate protons to free radicals because they had significantly high DPPH value compared to superoxide, hydroxyl and FRAP, which reactions were electron donation. Moreover, MMPH peptides had the ability to inhibit transition metal ions because of highly abundant glutamic acid and aspartic acid in peptide chain.

7.
J Food Sci Technol ; 55(1): 265-277, 2018 Jan.
Article in English | MEDLINE | ID: mdl-29358819

ABSTRACT

Enzymatic mungbean meal protein hydrolysate (eb-MPH) is a novel natural flavour/antioxidant source. A 15% bromelain (w/w) concentration with a hydrolysis time of 12 h was the optimum conditions to produce eb-MPH, which showed the greatest antioxidant activities and sensory characteristics. eb-MPH was composed of oligopeptides that had low molecular weight (< 10 kDa) as well as surface hydrophobicity and high content of hydrophobic amino acids. eb-MPH contributed to DPPH (80) and ABTS (95%) scavenging activities and to savoury/sweet flavour volatile compounds (3-methyl-butanal, furfural and benzaldehyde), bouillon odour, sweet odour, chicken odour, meaty odour, moderate bitter taste and umami. In addition, principal component analysis (PCA) showed that 72.87% of the total variance confirmed the correlation between DH, S0, DPPH, ABTS, sensory characteristics and volatile flavour compounds. These results suggested that eb-MPH can be used as a natural food flavouring agent and antioxidant.

8.
Process Biochem ; 70: 179-187, 2018 Jul.
Article in English | MEDLINE | ID: mdl-31031560

ABSTRACT

In this study, proteins from Thai brown rice (Khao Dawk Mali 105) were separated into albumin (2.18 %), globulin (3.98 %), glutelin (84.23 %), and prolamin (9.61 %) fractions, and were hydrolysed with various bromelain concentrations and hydrolysis times. Liquid chromatography-electrospray ionization/mass spectrometry (LC-ESI-MS/MS) was conducted to assess the composition, molecular weight (MW) distribution, and sequence of the resulting peptides, and showed that most peptides have a MW below 2000 Da (60-70 %). Glutelin fraction hydrolysates exhibited the highest 2,2'-azino-bis 3-ethylbenzthiazoline-6-sulfonic (ABTS•+) radical-scavenging (0.69 ± 0.04 µM trolox) and copper chelating (4.12 ± 0.01 mg ethylenediaminetetraacetic acid; EDTA) activities, which was further fractionated into six fractions using reversed-phase high-performance liquid chromatography. The fourth fraction showed the highest ABTS•+ scavenging (1.08 ± 0.03 mM trolox) and copper chelating (5.00 ± 0.02 mg EDTA) activity. LC-MS/MS analysis revealed that the peptides with MW less than 1500 Da and hydrophobic or aromatic N-terminal residues, such as SPFWNINAHS, MPVDVIANAYR, VVYFDQTQAQA, and VEVGGGARAP, possibly contributed to the highest antioxidant activity in fourth fraction.

9.
Food Funct ; 7(6): 2635-44, 2016 Jun 15.
Article in English | MEDLINE | ID: mdl-27186602

ABSTRACT

Brown rice, which is a less allergenic food grain and contains essential amino acids, was hydrolysed by bromelain and PROTEASE FP51® to improve its functionalities and taste for food applications. The hydrolysate prepared by bromelain (eb-RPH) had high protein solubility, surface hydrophobicity, low molecular weight peptides, hydrophobic amino acids (leucine, valine and glycine) and flavor amino acids (glutamic acid and aspartic acid). The eb-RPH exhibited higher 1,1-diphenyl-2-picrylhydrazyl (DPPH˙) and 2,2'-azino-bis 3-ethylbenzthiazoline-6-sulfonic (ABTS˙(+)) radical-scavenging activities of 76.62% and 52.96%, respectively, and possessed a better foaming capacity (221.76%) and emulsifying capacity (32.34%) than the hydrolysate prepared by PROTEASE FP51® (ep-RPH) did. The eb-RPH gave the desired taste, which is attributed to volatile flavor compounds (benzaldehyde, benzeneacetaldehyde and 2-acetyl-1-pyrroline) and non-volatile flavor compounds, such as monosodium glutamate, 5'-guanosine monophosphate and 5'-inosine monophosphate (0.07, 0.03 and 0.05 mg mL(-1), respectively). Brown rice peptides generated by bromelain were novel bioactive peptides with multifunctional properties.


Subject(s)
Endopeptidases/metabolism , Exopeptidases/metabolism , Oryza/chemistry , Plant Proteins/chemistry , Adult , Aspartic Acid/chemistry , Chemical Phenomena , Female , Glutamic Acid/chemistry , Glycine/chemistry , Guanosine Monophosphate/chemistry , Humans , Hydrolysis , Hydrophobic and Hydrophilic Interactions , Inosine Monophosphate/chemistry , Leucine/chemistry , Male , Molecular Weight , Sodium Glutamate/chemistry , Taste , Valine/chemistry , Volatile Organic Compounds/chemistry
10.
Int J Biol Macromol ; 91: 269-77, 2016 Oct.
Article in English | MEDLINE | ID: mdl-27212215

ABSTRACT

The biochemical characteristics and immunomodulatory activity of sulphated polysaccharides isolated from Ulva intestinalis and fractionated using a silica-silica column were investigated. The unfractionated (USP) and fractionated sulphated polysaccharides (FSP4, FSP30, and FSP32) consisted mostly of carbohydrates (4.84-26.55%) and sulphates (2.85-20.42%). Structural analyses showed that USP, FSP4, FSP30 and FSP32 had molecular weights of 300, 80, 110 and 140kDa, respectively. FSP30 exhibited the strongest DPPH radical scavenging activity. Moreover, FSP30 showed stronger immunomodulatory activities than UPS in term of stimulating the production of pro-inflammatory cytokines, including nitric oxide (NO), tumour necrosis factor-α (TNF-α), and interleukin-1ß (IL-1ß), in macrophage J774A.1 cells. USP and FSP30 were not cytotoxic to mouse macrophage at the tested concentrations (6.25-50µg/mL). The results suggested that U. intestinalis polysaccharides could be explored as potential antioxidant and immunomodulatory agents to be used as complementary medicine or functional foods.


Subject(s)
Immunologic Factors , Macrophages/immunology , Monokines/immunology , Nitric Oxide/immunology , Polysaccharides , Ulva/chemistry , Animals , Cell Line , Immunologic Factors/chemistry , Immunologic Factors/pharmacology , Macrophages/metabolism , Mice , Monokines/metabolism , Nitric Oxide/metabolism , Polysaccharides/chemistry , Polysaccharides/pharmacology
11.
Carbohydr Polym ; 110: 70-7, 2014 Sep 22.
Article in English | MEDLINE | ID: mdl-24906730

ABSTRACT

Cassava starch foam (CSF) trays blended with zein, gluten, soy protein, kraft fiber, and palm oil at various concentrations: 0, 5, 10 and 15% by weight of starch, were characterized. The addition of zein and gluten into CSF resulted in consolidated and homogeneous structural foams compared to its controls. Moreover, the flexural and compressive strength increased with increasing kraft, zein and gluten. CSF containing 15% kraft gave the highest flexural and compressive strength. However, the addition of palm oil into CSF gave the lowest flexural strength and compressive strength. The observed water absorption and water solubility index of CSFs blended with 15% zein and 15% gluten protein was lowest. Although kraft, zein and gluten could improve mechanical properties, water absorption and water solubility were greater than the expanded polystyrene foam (EPS). The CSF trays in this study might be an alternative for packing low water content foods.


Subject(s)
Food Packaging/methods , Lignin/chemistry , Manihot , Plant Oils/chemistry , Plant Proteins/chemistry , Starch/chemistry , Compressive Strength , Palm Oil , Tensile Strength
12.
Food Chem ; 158: 162-70, 2014 Sep 01.
Article in English | MEDLINE | ID: mdl-24731327

ABSTRACT

An enzymatic bromelain seaweed protein hydrolysate (eb-SWPH) was characterised as the precursor for thermally processed seafood flavour. Seaweed (Gracilaria fisheri) protein after agar extraction was hydrolysed using bromelain (enzyme activity=119,325 U/g) at 0-20% (w/w) for 0.5-24 h. Optimal hydrolysis conditions were determined using response surface methodology. The proposed model took into account the interaction effect of the enzyme concentration and hydrolysis time on the physicochemical properties and volatile components of eb-SWPH. The optimal hydrolysis conditions for the production of eb-SWPH were 10% bromelain for 3h, which resulted in a 38.15% yield and a 62.91% degree of hydrolysis value. Three free amino acids, arginine, lysine, and leucine, were abundant in the best hydrolysate. Ten volatile flavours of the best eb-SWPH were identified using gas chromatography/mass spectrometry. The predominant odourants were hexanal, hexanoic acid, nonanoic acid, and dihydroactinidiolide. The thermally processed seafood flavour produced from eb-SWPH exhibited a roasted seafood-like flavouring.


Subject(s)
Bromelains/metabolism , Seaweed/chemistry , Hydrolysis , Taste
13.
J Agric Food Chem ; 59(15): 8475-83, 2011 Aug 10.
Article in English | MEDLINE | ID: mdl-21739999

ABSTRACT

Enzymatic bromelain mungbean meal protein hydrolysate (eb-MPH) was produced from mungbean meal protein isolate (MPI). Enzymatic bromelain, with a known protease activity of 98,652 (unit/g), was used at concentrations of 0, 2, 6, 10, 14 and 18% (w/w) and with hydrolysis times of 0.5, 3, 6, 12, and 24 h. The pH and temperature were controlled at 6.0 and 50 °C, respectively. It was found that the best treatment combination for eb-MPH production by response surface methodology (RSM) was 18% bromelain and a hydrolysis time of 3 h, resulting in the greatest degree of hydrolysis (% DH) and percent yield, with values of 61.04 and 45.63%, respectively. Results also showed that the phenylalanine, tyrosine and leucine contents of the optimally produced eb-MPH were 20.88, 14.50 and 10.93%, respectively. Twelve volatile compounds were identified using gas chromatography mass spectrometry in eb-MPH; benzaldehyde, 2-pentylfuran and furfural were the predominant odorants.


Subject(s)
Bromelains/chemistry , Fabaceae/chemistry , Flavoring Agents/chemistry , Plant Proteins/chemistry , Chemical Phenomena , Flavoring Agents/isolation & purification , Hydrolysis , Plant Proteins/isolation & purification
SELECTION OF CITATIONS
SEARCH DETAIL