Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters

Complementary Medicines
Database
Language
Publication year range
1.
Br J Nutr ; 127(1): 12-22, 2022 01 14.
Article in English | MEDLINE | ID: mdl-33663624

ABSTRACT

Chronic tubulointerstitial nephropathy (CTIN) is one of the most common kidney diseases. However, treatment for CTIN has multiple limits. Adjuvant therapy through nutritional regulation has become a hot research topic at present. Icariin (ICA), an extraction of Chinese herbal medicine epimedium, has many pharmacological functions including anti-inflammation and tonifying kidney. Selenomethionine (SeMet) possesses the effects of antioxidant and lightening nephrotoxicity. However, little is known about the combined nephroprotection of them. This study was investigated to evaluate the joint effects of ICA and SeMet on CTIN and explore the mechanism. Based on a novel CTIN model developed in our previous study, mice were randomly divided into five groups (a: control; b: model; c: model + ICA; d: model + SeMet; e: model + ICA + SeMet). Renal tubule epithelial cells were treated with cyclosporine A and ochratoxin A without/with ICA or/and SeMet. The results showed that ICA or/and SeMet ameliorated CTIN by inhibiting the uptrends of blood urine nitrogen, serum creatinine, urine protein, urine gravity, histopathological damage degree and collagen I deposition. ICA or/and SeMet also increased cell proliferation and decreased apoptosis and the expression of transforming growth factor-beta 1 and α-smooth muscle actin. Emphatically, ICA and SeMet joint had better nephroprotection than alone in most indexes including fibrosis. Furthermore, ICA and SeMet joint decreased the activation of toll-like receptor 4 (TLR4)/NFκB pathway induced by CTIN. TLR4 overexpression counteracted the joint protection of ICA and SeMet. Therefore, ICA and SeMet in combination could protect against CTIN through blocking TLR4/NFκB pathway. The study will provide novel insights to explore an adjuvant therapeutic orientation.


Subject(s)
Nephritis, Interstitial , Selenomethionine , Animals , Antioxidants , Flavonoids , Mice , NF-kappa B/metabolism , Nephritis, Interstitial/drug therapy , Selenomethionine/pharmacology , Selenomethionine/therapeutic use , Toll-Like Receptor 4/genetics
2.
J Trace Elem Med Biol ; 69: 126881, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34751137

ABSTRACT

BACKGROUND: Ochratoxin A (OTA) is a mycotoxin produced by Aspergillus and Penicillium. The key target organ of OTA toxicity is the kidney, which has a significant impact on human health. Recently, nutrition regulation is suggested to be an effective protection against mycotoxins contamination. The current study investigated the combined protective effects of zinc and selenomethionine (SeMet) (a major component of organic selenium) on OTA-induced renal fibrosis and their potential mechanisms in human renal proximal tubule epithelial cells (HK-2 cells). METHODS: Cytotoxicity of different concentrations of OTA, zinc and SeMet on HK-2 cells was detected by cell viability, lactate dehydrogenase (LDH) and apoptotic nuclei assays. The expression of fibrosis biomarkers was detected by Real-Time PCR, western blotting and indirect immunofluorescence assays. The production of reactive oxygen species (ROS) was detected by ROS assay kit. The protein expression of autophagy biomarkers was detected by western blotting assay. RESULTS: Cytotoxicity was induced by OTA treatment in a dose-dependent manner, and it was attenuated by zinc or SeMet application in HK-2 cells. Zinc or SeMet application also down-regulated the expression of fibrosis biomarkers, and the combination of them displayed better effects. In addition, OTA increased intracellular ROS level and activated autophagy in a dose-dependent manner, and it was reversed by zinc and SeMet combined application. With the treatment of hydrogen peroxide (H2O2) or rapamycin (the specific activator of autophagy), the combined protective effects of zinc and SeMet were abolished. CONCLUSIONS: Zinc and SeMet application alleviated OTA-induced cytotoxicity and fibrosis in HK-2 cells. Combination of them was more effective than its individual application. The present study manifest novel insight about the alleviation of OTA-induced nephrotoxicity by nutrition regulation, and had a guiding effect on the clinical supplementation of nutritional elements.


Subject(s)
Ochratoxins , Selenium , Zinc , Antioxidants , Autophagy , Fibrosis , Humans , Hydrogen Peroxide , Reactive Oxygen Species , Selenium/pharmacology , Selenomethionine/pharmacology , Zinc/pharmacology
3.
Toxicon ; 181: 82-90, 2020 Jul 15.
Article in English | MEDLINE | ID: mdl-32371067

ABSTRACT

Ochratoxin A (OTA), one of the most deleterious mycotoxins, could cause a variety of toxicological effects especially nephrotoxicity in animals and humans. Taurine, a wide-distributed cytoprotective amino acid, plays an important role as a basic factor for maintaining cellular integrity homeostasis. However, the potential effect of taurine in OTA-induced nephrotoxicity remains unknown. In the present study, we demonstrated that OTA treatment at 4.0-8.0 µM increased apoptosis in PK-15 cells as shown by increased the ratio of apoptosis and protein expression of Bax and cleaved-caspase-3, decreased protein expression of Bcl-2. Meantime, OTA treatment triggered autophagy, as indicated by markedly increased the protein expression of LC3-II and fluorescence intensity of GFP-LC3 dots. Taurine supplementation decreased OTA-induced cytotoxicity and attenuated apoptosis as shown by the decreased Annexin V/PI staining and the decreased expression of apoptosis-related proteins including Bax and caspase-3. Meanwhile, taurine attenuated OTA-induced autophagy by decreased the protein expression of LC3-II and fluorescence intensity of GFP-LC3 dots to maintain cellular homeostasis. In conclusion, taurine treatment could alleviate OTA-induced apoptosis and inhibit the triggered autophagy in PK-15 cells. Our study provides supportive data for the potential roles of taurine in reducing OTA-induced renal toxicity.


Subject(s)
Ochratoxins/toxicity , Taurine/metabolism , Animals , Apoptosis , Autophagy , Cell Survival
SELECTION OF CITATIONS
SEARCH DETAIL