Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Publication year range
1.
J Agric Food Chem ; 69(48): 14620-14629, 2021 Dec 08.
Article in English | MEDLINE | ID: mdl-34812612

ABSTRACT

Zingerone (vanillylacetone; 4-hydroxy-3-methoxyphenylethyl methyl ketone) is a key component responsible for the pungency of ginger (Zingiber officinale). In this study, it was confirmed that a type III polyketide synthase (PKS) gene (pmpks) from Piper methysticum exhibits feruloyl-CoA-preferred benzalacetone synthase (BAS) activity. Based on these results, we constructed an artificial biosynthetic pathway for zingerone production from supplemented ferulic acid with 4-coumarate CoA ligase (4CL), PmPKS, and benzalacetone reductase (BAR). Furthermore, a de novo pathway for the production of zingerone was assembled using six heterologous genes, encoding tyrosine ammonia-lyase (optal), cinnamate-4-hydroxlase (sam5), caffeic acid O-methyltransferase (com), 4CL (4cl2nt), BAS (pmpks), and BAR (rzs1), in Escherichia coli. Using the engineered l-tyrosine-overproducing E. coli ΔCOS4 strain as a host, a maximum yield of 24.03 ± 2.53 mg/L zingerone was achieved by complete de novo synthesis.


Subject(s)
Biosynthetic Pathways , Kava , Butanones , Escherichia coli/genetics , Guaiacol/analogs & derivatives
2.
J Microbiol Biotechnol ; 28(7): 1105-1111, 2018 Jul 28.
Article in English | MEDLINE | ID: mdl-30021423

ABSTRACT

The flavin-dependent monooxygenase Sam5 was previously reported to be a bifunctional hydroxylase with a coumarte 3-hydroxylase and a resveratrol 3'-hydroxylase activity. In this article, we showed the Sam5 enzyme has 3'-hydroxylation activities for methylated resveratrol (pinostilbene and pterostilbene), hydroxylated resveratrol (oxyresveratrol) and glycosylated resveratrol (piceid) as substrates. However, the use of piceid, a glycone type stilbene, as a substrate for bioconversion experiments with the Sam5 enzyme expressed in, Escherichia coli does not convert to the hydroxylated compound astringin, but it has converted in vitro enzyme reactions. Finally, we report a novel catalytic activity of Sam5 monooxygenase for the synthesis of piceatannol derivatives, 3'-hydroxylated stilbene compounds. Development of this bioproduction method for the hydroxylation of stilbenes is challenging because of the difficulty in expressing P450-type hydroxylase in E. coli and regionspecific chemical synthesis.


Subject(s)
Flavins/chemistry , Flavins/metabolism , Mixed Function Oxygenases/metabolism , Stilbenes/chemistry , Stilbenes/metabolism , Dinitrocresols/metabolism , Escherichia coli/metabolism , Glucosides/metabolism , Hydroxylation , Plant Extracts/metabolism , Resveratrol
SELECTION OF CITATIONS
SEARCH DETAIL