Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 65
Filter
1.
Int J Mol Sci ; 25(6)2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38542316

ABSTRACT

Nardostachys jatamansi is widely used as a traditional medicine in Asian countries. Numerous recent studies have reported the biological activities of its secondary metabolites and extracts. In this study, a total of 14 components were isolated, including cycloolivil and 2-(3'-hydroxy-5'-ethoxyphenyl)-3-hydroxylmethyl-7-methoxy-2,3-dihydrobenzofuran-5-carboxylic acid, which were first discovered in N. jatamansi. The isolated compounds were investigated for their anti-inflammatory effects on HaCaT keratinocytes and their potential to alleviate skin inflammation. The results of the screening revealed that cycloolivil and 4ß-hydroxy-8ß-methoxy-10-methylene-2,9-dioxatricyclo[4.3.1.03,7]decane reduced the production of inflammatory cytokines induced by TNF-α/IFN-γ, such as IL-6, IL-8, and RANTES, in keratinocytes. This study focused on exploring the biological effects of cycloolivil, and the results suggested that cycloolivil inhibits the expression of COX-2 proteins. Further mechanistic evaluations confirmed that the anti-inflammatory effects of cycloolivil were mediated by blockage of the NF-κB and JAK/STAT signaling pathways. These results suggest that cycloolivil isolated from N. jatamansi could be used to treat skin inflammatory diseases.


Subject(s)
NF-kappa B , Nardostachys , Phenols , NF-kappa B/metabolism , Tumor Necrosis Factor-alpha/metabolism , Nardostachys/metabolism , Interferon-gamma/metabolism , Keratinocytes/metabolism , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/metabolism
2.
Int J Mol Sci ; 25(5)2024 Feb 22.
Article in English | MEDLINE | ID: mdl-38473792

ABSTRACT

Lindera erythrocarpa, a flowering plant native to eastern Asia, has been reported to have neuroprotective activity. However, reports on the specific bioactive compounds in L. erythrocarpa are finite. The aim of this study was to investigate the anti-neuroinflammatory and neuroprotective effects of the compounds isolated from L. erythrocarpa. Dihydropashanone, a compound isolated from L. erythrocarpa extract, was found to have protected mouse hippocampus HT22 cells from glutamate-induced cell death. The antioxidant and anti-inflammatory properties of dihydropashanone in mouse microglial BV2 and HT22 cells were explored in this study. The results reveal that dihydropashanone inhibits lipopolysaccharide-induced inflammatory response and suppresses the activation of nuclear factor (NF)-κB in BV2 cells. In addition, dihydropashanone reduced the buildup of reactive oxygen species in HT22 cells and induced activation of the nuclear factor E2-related factor 2 (Nrf2)/heme oxygenase (HO)-1 signaling pathway in BV2 and HT22 cells. Our results suggest that dihydropashanone reduces neuroinflammation by decreasing NF-κB activation in microglia cells and protects neurons from oxidative stress via the activation of the Nrf2/HO-1 pathway. Thus, our data suggest that dihydropashanone offers a broad range of applications in the treatment of neurodegenerative illnesses.


Subject(s)
Lindera , Neurodegenerative Diseases , Mice , Animals , Lindera/metabolism , NF-E2-Related Factor 2/metabolism , Signal Transduction , Anti-Inflammatory Agents/pharmacology , NF-kappa B/metabolism
3.
Exp Mol Med ; 56(3): 515-526, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38443594

ABSTRACT

Single-cell omics technologies have revolutionized molecular profiling by providing high-resolution insights into cellular heterogeneity and complexity. Traditional bulk omics approaches average signals from heterogeneous cell populations, thereby obscuring important cellular nuances. Single-cell omics studies enable the analysis of individual cells and reveal diverse cell types, dynamic cellular states, and rare cell populations. These techniques offer unprecedented resolution and sensitivity, enabling researchers to unravel the molecular landscape of individual cells. Furthermore, the integration of multimodal omics data within a single cell provides a comprehensive and holistic view of cellular processes. By combining multiple omics dimensions, multimodal omics approaches can facilitate the elucidation of complex cellular interactions, regulatory networks, and molecular mechanisms. This integrative approach enhances our understanding of cellular systems, from development to disease. This review provides an overview of the recent advances in single-cell and multimodal omics for high-resolution molecular profiling. We discuss the principles and methodologies for representatives of each omics method, highlighting the strengths and limitations of the different techniques. In addition, we present case studies demonstrating the applications of single-cell and multimodal omics in various fields, including developmental biology, neurobiology, cancer research, immunology, and precision medicine.


Subject(s)
Multiomics , Precision Medicine , Precision Medicine/methods
4.
J Ethnopharmacol ; 324: 117813, 2024 Apr 24.
Article in English | MEDLINE | ID: mdl-38281691

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Fatsia japonica is a traditional medicine used to treat various diseases, including inflammation-related disorders. However, its antineuroinflammatory and neuroprotective effects remain unclear. AIM OF THE STUDY: We aimed to evaluate the anti-neuroinflammatory and neuroprotective effects of F. japonica extract to identify the underlying mechanisms. MATERIALS AND METHODS: The components of F. japonica extract were profiled using ultra-high-performance liquid chromatography-mass spectrometry. The effects of F. japonica extract were investigated in BV2 microglia and HT22 hippocampal cells. Furthermore, in vivo effects of F. japonica extract were assessed using zebrafish models treated with H2O2 and LPS to evaluate the effects of in vivo. RESULTS: We identified 27 compounds in the F. japonica extract. F. japonica extract demonstrated anti-inflammatory properties by suppressing LPS-induced inflammatory responses in both BV2 cells and zebrafish, along with inhibiting the activation of the nuclear factor (NF)-κB (p65) pathway. The protective effects of this extract were also observed on glutamate-treated HT22 cells and in H2O2-induced zebrafish. Furthermore, F. japonica extract upregulated nuclear factor E2-related (Nrf) 2/heme oxygenase (HO)-1 expression in BV2 and HT22 cells. CONCLUSIONS: F. japonica extract exerted anti-neuroinflammatory and neuroprotective effects through Nrf2/HO-1 and the NF-κB pathway.


Subject(s)
Neuroprotective Agents , Animals , Neuroprotective Agents/pharmacology , Neuroprotective Agents/metabolism , Zebrafish , Antioxidants/pharmacology , Antioxidants/metabolism , Lipopolysaccharides/pharmacology , Hydrogen Peroxide/metabolism , Cell Line , NF-E2-Related Factor 2/metabolism , NF-kappa B/metabolism , Microglia , Heme Oxygenase-1/metabolism
5.
Int J Mol Sci ; 24(8)2023 Apr 17.
Article in English | MEDLINE | ID: mdl-37108568

ABSTRACT

Compounds derived from Curcuma longa L. (C. longa) have been extensively studied and reported to be effective and safe for the prevention and treatment of various diseases, but most research has been focused on curcuminoids derived from C. longa. As neurodegenerative diseases are associated with oxidation and inflammation, the present study aimed to isolate and identify active compounds other than curcuminoids from C. longa to develop substances to treat these diseases. Seventeen known compounds, including curcuminoids, were chromatographically isolated from the methanol extracts of C. longa, and their chemical structures were identified using 1D and 2D NMR spectroscopy. Among the isolated compounds, intermedin B exhibited the best antioxidant effect in the hippocampus and anti-inflammatory effect in microglia. Furthermore, intermedin B was confirmed to inhibit the nuclear translocation of NF-κB p-65 and IκBα, exerting anti-inflammatory effects and inhibiting the generation of reactive oxygen species, exerting neuroprotective effects. These results highlight the research value of active components other than curcuminoids in C. longa-derived compounds and suggest that intermedin B may be a promising candidate for the prevention of neurodegenerative diseases.


Subject(s)
NF-kappa B , Neuroprotective Agents , NF-kappa B/metabolism , Neuroprotective Agents/pharmacology , Reactive Oxygen Species/pharmacology , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/chemistry , Microglia/metabolism , Curcuma/chemistry , Plant Extracts/pharmacology , Plant Extracts/chemistry , Hippocampus/metabolism , Diarylheptanoids/pharmacology , Lipopolysaccharides/pharmacology
6.
Phytomedicine ; 109: 154579, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36610150

ABSTRACT

BACKGROUND: Morus alba fruits (MAF) belong to the Moraceae family, which are known to be effective in treating diabetic, autoimmune, and hormonal diseases owing to its low toxicity. MAF, as excerpted from Donguibogam, a representative Korean medical encyclopedia protected by UNESCO, has been widely used to treat lumbago, arthritis, and diabetes. Based on these effects, MAF is investigated for unidentified effects of atopic dermatitis, characterized by complex etiology of skin barrier dysfunction, inflammation, and chronic pruritus. METHODS: The antioxidant, inflammatory, and immunomodulatory properties of MAF and its bioactive compounds have been widely reported. According to an examination of 1-chloro-2,4-dinitrobenzene-induced AD-like skin lesions in NC/Nga mice, AD symptoms, such as increased dermatitis score, scratching frequency, immunoglobulin E, trans-epidermal water loss, epidermal thickness, and infiltration of mast cells, were relieved by topical MAF administration. They effectively attenuated cytokines and chemokines, such as interleukin (IL)-4, IL-5, IL-6, IL-8, IL-13, IL-17A, IL-22, IL-1ß, tumor necrosis factor-α, thymic stromal lymphopoietin (TSLP), thymic- and activation-regulated chemokine, normal T cell expression, and macrophage-derived chemokine secretion at the mRNA level in TNF-α/IFN-γ induced HaCaT (human immortalized keratinocyte) cells. RESULTS: Both in vivo and in vitro models, MAF increased the expression of filaggrin, involucrin, and loricrin, as well as inhibited the activation of Janus kinase 2, signal transducer and activator of transcription proteins 1, and mitogen-activated protein kinase pathways, including extracellular signal-regulated kinase, c-jun N-terminal kinase, and p38. Moreover, MAF reduced the expression of TSLP and periostin, which play important roles in skin pruritus as chronic pruritogenic factors. CONCLUSION: These data indicate that MAF could be used as a potential treatment for AD-like skin lesions by regulating the inflammatory response, improving physical skin barriers, and relieving symptomatic pruritus.


Subject(s)
Dermatitis, Atopic , Humans , Mice , Animals , Dermatitis, Atopic/pathology , Fruit , Pruritus/drug therapy , Skin , Cytokines/metabolism , Chemokines/metabolism , Thymic Stromal Lymphopoietin , Tumor Necrosis Factor-alpha/metabolism , Immunity
7.
Article in English | MEDLINE | ID: mdl-36310615

ABSTRACT

Malus toringoides (Rehd.) Hughes (Rosaceae) is used as a traditional folk medicine in the Tibet autonomous region of China to treat hypertension, hyperglycemia, and hyperlipidemia. However, few modern pharmacological data on the use of this plant against diabetic syndrome are available. In this study, we examined the vascular protection provided by a 70% ethanol extract of M. toringoides (EMT) in human umbilical vein endothelial cells (HUVECs) grown in high-glucose medium and in a high-fat diet/streptozotocin-induced rat diabetes model. EMT significantly suppressed the expression of cell adhesion molecules in both HUVECs and diabetic rats. EMT also inhibited activation of the CX3CL1/CX3CR1 axis and the nuclear factor kappa B (NF-κB) signaling pathway in vivo and in vitro. The results provide a significant information on the vasoprotective properties of M. toringoides that may contribute to the development and application of related herbal medicines.

8.
Antioxidants (Basel) ; 11(4)2022 Mar 31.
Article in English | MEDLINE | ID: mdl-35453375

ABSTRACT

Lycopus maackianus Makino belongs to the Labiatae family and is used in traditional medicine to manage postpartum edema and boils. However, few studies on its antioxidant and anti-inflammatory effects have been conducted. Here, the compounds in L. maackianus methanol (MeOH) extract were profiled using ultra-high-performance liquid chromatography-time-of-flight high-resolution mass spectrometry analysis. The antioxidant activity of L. maackianus MeOH extract was shown to increase in a concentration-dependent manner by investigating the 2,2-diphenyl-1-picrylhydrazyl and 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) radical scavenging activity. Next, in lipopolysaccharide-treated BV2 cells, L. maackianus extract inactivated the nuclear factor-kappa B pathway, inhibiting nitric oxide, prostaglandin E2, interleukin-6, and tumor necrosis factor-α production and inducible nitric oxide synthase and cyclooxygenase-2 protein expression. Furthermore, L. maackianus extract protected against oxidative stress-induced cellular damage in glutamate-stimulated HT22 cells. L. maackianus MeOH extract induced heme oxygenase-1 expression and increased the translocation of nuclear factor E2-related factor 2 in the nucleus, thus exhibiting antioxidant and anti-inflammatory effects. Moreover, the in vivo antioxidant and anti-inflammatory effects of the extract were demonstrated in a zebrafish (Danio rerio) model treated with hydrogen peroxide and lipopolysaccharide. MeOH L. maackianus extract showed antioxidant and anti-neuroinflammatory effects by increasing the expression of heme oxygenase-1, establishing its therapeutic potential for neuroinflammatory diseases.

9.
J Ethnopharmacol ; 292: 115233, 2022 Jun 28.
Article in English | MEDLINE | ID: mdl-35346812

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Atopic dermatitis (AD) is a kind of inflammation on the skin following with swollen, itchy, dryness and cracked skin. Though the exact cause of AD is unknown, there are evidence that people with AD have a compromised skin barrier along with inflammation. Eclipta prostrata Linné is a traditional herbal medicinal plant, has been used for the diabetes, obesity, jaundice, and inflammation. We supposed E. prostrata L. has an anti-inflammatory effect on the skin. AIM OF THE STUDY: We aimed to assess the effect of E. prostrata L. EtOH extract (EP) and elucidate the associated molecular mechanisms. MATERIALS AND METHODS: The effect of EP and the molecular mechanisms were eluciated in house dust mite (HDM)-induced AD mice model and TNF-α/IFN-γ-stimulated HaCaT keratinocytes by histological analysis, enzyme-linked immunosorbent assay, quantitative real time polymerase chain reaction, and Western blot. RESULTS: The results revealed that EP improved the progression of AD symptoms, decreasing epidermis/dermis thickness, infiltrated immune cells, and restored the skin barrier dysfunction and imbalanced immune response. EP suppressed the expressions of T helper (Th)1, Th2, Th17 cytokines, phosphorylation of extracellular signal-regulated kinase/signal transducer and activator of transcription 1 in skin of HDM-induced AD mice as well as inhibition the translocation of nuclear factor-κB in HaCaT keratinocytes. CONCLUSIONS: Collectively, EP improved the allergic inflammation of the skin through recovery the skin barrier, and regulation the immune balance. These results suggest EP may have therapeutic potential as an anti-atopic agent.


Subject(s)
Dermatitis, Atopic , Eclipta , Animals , Anti-Inflammatory Agents/adverse effects , Cytokines/metabolism , Dermatitis, Atopic/chemically induced , Dermatitis, Atopic/drug therapy , Dermatophagoides pteronyssinus/metabolism , Dinitrochlorobenzene , Humans , Inflammation/drug therapy , Mice , Mice, Inbred BALB C , Pyroglyphidae , Skin
10.
Nat Prod Res ; 36(24): 6232-6239, 2022 Dec.
Article in English | MEDLINE | ID: mdl-34989301

ABSTRACT

Using combined chromatographic separation techniques, three new triterpenoids named lycomclavatols A-C (1-3), a new natural product, methyl lycernuate-A (4), as well as seven known compounds (5-11), were isolated from the methanol extract of the whole plants of Lycopodium clavatum. Their chemical structures were established based on 1 D/2D NMR and HR-ESI-MS spectroscopic analyses. Among the isolates, compound 1 exhibited inhibitory activity on NO production in LPS-stimulated BV2 cells (IC50 = 36.0 µM). In addition, 1 was cytotoxic against both HepG2 and A549 cancer cell lines, with IC50 values of 40.7 and 87.0 µM, respectively. Compounds 10 and 11 showed cytotoxicity on only HepG2 and A549 cells, with IC50 values of 91.2 and 57.6 µM, respectively. Our results contribute to understanding more the secondary metabolites produced by L. clavatum and provide a scientific rationale for further investigations of anti-inflammatory and anticancer effects for this valuable medicinal plant.


Subject(s)
Lycopodium , Plants, Medicinal , Triterpenes , Lycopodium/chemistry , Triterpenes/pharmacology , Triterpenes/chemistry , Nitric Oxide/metabolism , Plants, Medicinal/chemistry , Plant Extracts/pharmacology , Plant Extracts/chemistry , Inhibitory Concentration 50
11.
Int J Mol Sci ; 22(14)2021 Jul 12.
Article in English | MEDLINE | ID: mdl-34299094

ABSTRACT

The root bark of Cudrania tricuspidata has been reported to have anti-sclerotic, anti-inflammatory, antioxidant, neuroprotective, hepatoprotective, and cytotoxic activities. In the present study, the effect of 16 compounds from C. tricuspidata on tumor necrosis factor-α+interferon-γ-treated HaCaT cells were investigated. Among these 16 compounds, 11 decreased IL-6 production and 15 decreased IL-8 production. The six most effective compounds, namely, steppogenin (2), cudraflavone C (6), macluraxanthone B (12), 1,6,7-trihydroxy-2-(1,1-dimethyl-2-propenyl)-3- methoxyxanthone (13), cudraflavanone B (4), and cudratricusxanthone L (14), were selected for further experiments. These six compounds decreased the expression levels of chemokines, such as regulated on activation, normal T cell expressed and secreted (RANTES) and thymus and activation-regulated chemokine (TARC), and downregulated the protein expression levels of intercellular adhesion molecule-1. Compounds 2, 6, 12, 4, and 14 inhibited nuclear factor-kappa B p65 translocation to the nucleus; however, compound 13 showed no significant effects. In addition, extracellular signal regulatory kinase-1/2 phosphorylation was only inhibited by compound 14, whereas p38 phosphorylation was inhibited by compounds 13 and 4. Taken together, the compounds from C. tricuspidata showed potential to be further developed as therapeutic agents to suppress inflammation in skin cells.


Subject(s)
Anti-Inflammatory Agents/pharmacology , Inflammation/drug therapy , Keratinocytes/drug effects , Moraceae/chemistry , Phytochemicals/chemistry , Phytochemicals/pharmacology , Plant Extracts/pharmacology , Chemokines/metabolism , Cytokines/metabolism , Humans , Inflammation/metabolism , Inflammation/pathology , Interferon-gamma/metabolism , Keratinocytes/metabolism , NF-kappa B/metabolism , Phosphorylation , Phytochemicals/classification , Signal Transduction , Tumor Necrosis Factor-alpha/pharmacology
12.
Int J Mol Sci ; 22(14)2021 Jul 13.
Article in English | MEDLINE | ID: mdl-34299102

ABSTRACT

Aging is associated with immune disregulation and oxidative stress which lead to inflammation and neurodegenerative diseases. We have tried to identify the anti-neuroinflammatory and anti-inflammatory components of Coreopsis lanceolata L. The dried flowers of C. lanceolata were extracted with 70% EtOH, and the obtained extract was divided into CH2Cl2, EtOAc, n-BuOH, and H2O fractions. The CH2Cl2 fraction was separated using silica gel and C-18 column chromatography to yield phenylheptatriyne (1), 2'-hydroxy-3,4,4'-trimethoxychalcone (2), and 4',7-dimethoxyflavanone (3). Additionally, the EtOAc fraction was subjected to silica gel, C-18, and Sephadex LH-20 column chromatography to yield 8-methoxybutin (4) and leptosidin (5). All the compounds isolated from C. lanceolata inhibited the production of nitric oxide (NO) in LPS-induced BV2 and RAW264.7 cells. In addition, phenylheptatriyne and 4',7-dimethoxyflavanone reduced the secretion of inflammatory cytokines, tumor necrosis factor alpha (TNF-α), and interleukin (IL)-6. Among them, phenylheptatriyne was significantly downregulated in the expression of inducible NO synthase (iNOS) and cyclooxygenase-2 (COX-2). Subsequently, phenylheptatriyne also effectively inhibited nuclear factor-kappa B (NF-κB) activation in LPS-stimulated BV2 and RAW264.7 cells. Based on these results, the anti-neuroinflammatory effect of phenylheptatriyne isolated from C. lanceolata was confirmed, which may exert a therapeutic effect in treatment of neuroinflammation-related diseases.


Subject(s)
Anti-Inflammatory Agents/pharmacology , Coreopsis/chemistry , Flowers/chemistry , Inflammation/drug therapy , Macrophages/drug effects , Microglia/drug effects , Plant Extracts/pharmacology , Animals , Dinoprostone/metabolism , Heme Oxygenase-1/metabolism , Inflammation/chemically induced , Inflammation/metabolism , Inflammation/pathology , Lipopolysaccharides/toxicity , Macrophages/metabolism , Macrophages/pathology , Mice , Microglia/metabolism , Microglia/pathology , Nitric Oxide/metabolism , Nitric Oxide Synthase Type II/metabolism , RAW 264.7 Cells , Signal Transduction
13.
Exp Ther Med ; 21(6): 591, 2021 Jun.
Article in English | MEDLINE | ID: mdl-33884029

ABSTRACT

Mecasin, a traditional medicine, contains nine herbal constituents: Curcuma longa, Salvia miltio rhiza, Gastrodia elata, Chaenomeles sinensis, Polygala tenuifolia, Paeonia japonica, Glycyrrhiza uralensis, Atractylodes japonica and processed Aconitum carmichaeli. Several biological effects of mecasin have been described both in vivo and in vitro. Previous studies have demonstrated that mecasin has anti-inflammatory effects. The purpose of the present study was to determine anti-inflammatory effects of mecasin and its natural product constituents on lipopolysaccharide (LPS)-stimulated BV2 cells by measuring nitrite and nitric oxide contents. Nitrite production levels in LPS-stimulated BV2 cells incubated with mecasin and each individual constituent of mecasin were measured. The results suggested that C. longa, P. tenuifolia and P. japonica inhibited nitrite production in a pattern similar to that of mecasin. The effect of mecasin was likely a result of synergistic effects of its natural herb constituents.

14.
Biomed Res Int ; 2020: 8851010, 2020.
Article in English | MEDLINE | ID: mdl-33313321

ABSTRACT

The global obesity epidemic has nearly doubled since 1980, and this increasing prevalence is threatening public health. It has been reported that natural products could contain potential functional ingredients that may assist in preventing obesity. Bojungchiseub-tang (BJT), mentioned in the Donguibogam as an herbal medication for the treatment of edema, a symptom of obesity, consists of eleven medicinal herbs. However, the pharmacological activity of BJT has not been investigated. The present study was designed to investigate the putative effect of BJT on the adipogenesis of 3T3-L1 cells and the weight gain of high-fat diet (HFD-) fed C57BL/6 mice. Oil Red O staining was conducted to examine the amount of lipids in 3T3-L1 adipocytes. Male C57BL/6 mice were divided into three groups: standard diet group (control, CON), 45% HFD group (HFD), and HFD supplemented with 10% of BJT (BJT). The expression levels of genes and proteins related to adipogenesis in cells, WAT, and liver were analyzed by quantitative real-time polymerase chain reaction (qRT-PCR) and western blot, respectively. We found that BJT treatment significantly decreased the protein and mRNA levels of peroxisome proliferator-activated receptor γ (PPARγ), CCAAT/enhancer-binding protein α (C/EBPα), and sterol regulatory element-binding protein 1 (SREBP1) in a dose-dependent manner in differentiated 3T3-L1 cells. Similar to the results of the in vitro experiment, BJT suppressed HFD-induced weight gain in an obese mouse model. In addition, BJT effectively reduced the HFD-induced epididymal adipose tissue weight/body weight index. BJT also downregulated the mRNA levels of PPARγ, C/EBPα, and SREBP1 in the epididymal adipose and liver tissue of HFD-fed obese mice. These findings suggest that BJT induces weight loss by affecting adipogenic transcription factors.


Subject(s)
Adipocytes/drug effects , Drugs, Chinese Herbal/pharmacology , Epididymis/drug effects , Obesity/drug therapy , 3T3-L1 Cells , Adipogenesis/drug effects , Animals , Body Weight , CCAAT-Enhancer-Binding Proteins/metabolism , Cell Survival , Diet, High-Fat , Epididymis/metabolism , Lipids/chemistry , Male , Mice , Mice, Inbred C57BL , PPAR gamma/metabolism , Republic of Korea , Sterol Regulatory Element Binding Protein 1/metabolism
15.
Food Sci Nutr ; 8(10): 5717-5728, 2020 Oct.
Article in English | MEDLINE | ID: mdl-33133573

ABSTRACT

Breast cancer is the most common cancer in women, and metastasis is the leading cause of death in breast cancer patients. Although chemoprevention is widely employed to treat breast cancer, anticancer drugs can cause significant adverse effects. Lysimachia christinae Hance (LH) is a traditional Chinese medicinal plant with diverse therapeutic effects. However, its potential anticancer activity has not been fully investigated in breast cancers to date. Using high-performance liquid chromatography-mass spectrometry, we found that the main constituent of LH extract (LHE) was rutin. Our results indicated that LHE or rutin markedly decreased the proliferation and viability of estrogen receptor (ER)-positive MCF-7 and ER-negative HCC38 human breast cancer cells. LHE treatment induced morphological changes in apoptotic nuclei using 4',6-diamidino-2-phenylindole (DAPI) staining. Annexin V-fluorescein isothiocyanate (FITC) propidium iodide (PI) staining assay revealed that apoptosis significantly increased in both breast cancer cell types after LHE treatment. Additionally, the expression of poly (ADP-ribose) polymerase (PARP), Bcl-2, and phospho-Akt decreased, while that of cleaved PARP and p53 increased, in both cell types. Furthermore, LHE treatment inhibited epithelial-mesenchymal transition (EMT). LHE treatment significantly upregulated E-cadherin level in MCF-7 and HCC38 cells, while vimentin level was downregulated in HCC38 cells. In addition, transwell and wound-healing assays revealed that LHE or rutin inhibited breast cancer cell migration. Overall, these findings demonstrate that LHE is a promising therapeutic agent that acts by promoting apoptosis and reducing cell proliferation, EMT, and cell migration in ER-positive and ER-negative breast cancer cells.

16.
J Nat Prod ; 83(9): 2655-2663, 2020 09 25.
Article in English | MEDLINE | ID: mdl-32936639

ABSTRACT

Repeated column chromatography of Syringa dilatata flowers, a native shrub to Korea, led to the isolation of eight new oleoside-type secoiridoids, syringoleosides A-H (1-8), as well as five known secoiridoids (9-13). The new chemical structures were identified through spectroscopic data analysis, as well as the application of chemical methods. Compounds 1, 2, 6, 7, 11, and 13 showed suppression effects on NO production in LPS-induced RAW 264.7 cells, with IC50 values ranging from 32.5 ± 9.8 to 65.7 ± 11.0 µM, and no visible toxicity. The content of the major secoiridoids in S. dilatata flowers, compounds 1, 4, 5, 8, 9, 12, and 13, were determined through HPLC analysis.


Subject(s)
Flowers/chemistry , Iridoids/chemistry , Iridoids/pharmacology , Lipopolysaccharides/pharmacology , Nitric Oxide/antagonists & inhibitors , Syringa/chemistry , Animals , Cell Survival , Enzyme Inhibitors/pharmacology , Magnetic Resonance Spectroscopy , Mice , Molecular Structure , Nitric Oxide Synthase Type II/antagonists & inhibitors , Plant Extracts/chemistry , RAW 264.7 Cells
17.
Mediators Inflamm ; 2020: 3164239, 2020.
Article in English | MEDLINE | ID: mdl-32848508

ABSTRACT

A hypernomic reaction or an abnormal inflammatory process could cause a series of diseases, such as cardiovascular disease, neurodegeneration, and cancer. Additionally, oxidative stress has been identified to induce severe tissue injury and inflammation. Carpesium cernuum L. (C. cernuum) is a Chinese folk medicine used for its anti-inflammatory, analgesic, and detoxifying properties. However, the underlying molecular mechanism of C. cernuum in inflammatory and oxidative stress conditions remains largely unknown. The aim of this study was to examine the effects of a methanolic extract of C. cernuum (CLME) on lipopolysaccharide- (LPS-) induced RAW 264.7 mouse macrophages and a sepsis mouse model. The data presented in this study indicated that CLME inhibited LPS-induced production of proinflammatory mediators such as nitric oxide (NO) and prostaglandin E2 (PGE2) in RAW 264.7 cells. CLME treatment also reduced reactive oxygen species (ROS) generation and enhanced the expression of heme oxygenase-1 (HO-1) protein in a dose-dependent manner in the LPS-stimulated RAW 264.7 cells. Moreover, CLME treatment abolished the nuclear translocation of nuclear factor-κB (NF-κB), enhanced the activation of nuclear factor-erythroid 2 p45-related factor 2 (Nrf2), and reduced the expression of extracellular signal-related kinase (ERK) and ERK kinase (MEK) phosphorylation in LPS-stimulated RAW 264.7 cells. These outcomes implied that CLME could be a potential antioxidant and anti-inflammatory agent.


Subject(s)
Anti-Inflammatory Agents/pharmacology , Antioxidants/pharmacology , Asteraceae/metabolism , Lipopolysaccharides/metabolism , Plant Extracts/pharmacology , Sepsis/metabolism , Animals , Dinoprostone/metabolism , Extracellular Signal-Regulated MAP Kinases/metabolism , Heme Oxygenase-1/metabolism , Inflammation , Macrophages/metabolism , Male , Membrane Proteins/metabolism , Methanol , Mice , Mice, Inbred C57BL , NF-E2-Related Factor 2/metabolism , Oxidative Stress , RAW 264.7 Cells , Reactive Oxygen Species , Tetrazolium Salts/chemistry , Thiazoles/chemistry
18.
Int J Mol Sci ; 21(14)2020 Jul 08.
Article in English | MEDLINE | ID: mdl-32650596

ABSTRACT

Heme oxygenase (HO)-1 is a detoxifying phase II enzyme that plays a role in both inflammatory and oxidative stress responses. Curdrania tricuspidata is widespread throughout East Asia and is used as a therapeutic agent in traditional medicine. We investigated whether treatment with sixteen flavonoid or xanthone compounds from C. tricuspidata could induce HO-1 expression in HT22 hippocampal cells, RAW264.7 macrophage, and BV2 microglia. In these compounds, kuwanon C showed the most remarkable HO-1 expression effects. In addition, treatment with kuwanon C reduced cytoplasmic nuclear erythroid 2-related factor (Nrf2) expression and increased Nrf2 expression in the nucleus. Significant inhibition of glutamate-induced oxidative injury and induction of reactive oxygen species (ROS) occurred when HT22 hippocampal cells were pretreated with kuwanon C. The levels of inflammatory mediator and cytokine, which increased following lipopolysaccharide (LPS) stimulation, were suppressed in RAW264.7 macrophage and BV2 microglia after kuwanon C pretreatment. Kuwanon C also attenuated p65 DNA binding and translocation into the nucleus in LPS-induced RAW264.7 and BV2 cells. The anti-inflammatory, anti-neuroinflammatory, and neuroprotective effects of kuwanon C were reversed when co-treatment with HO-1 inhibitor of tin protoporphyrin-IX (SnPP). These results suggest that the neuroprotective and anti-inflammatory effects of kuwanon C are regulated by HO-1 expression.


Subject(s)
Anti-Inflammatory Agents/pharmacology , Benzene Derivatives/pharmacology , Heme Oxygenase-1/metabolism , Hippocampus/drug effects , Macrophages/drug effects , Membrane Proteins/metabolism , Microglia/drug effects , Moraceae/chemistry , Neuroprotective Agents/pharmacology , Animals , Cell Line , Cytokines/metabolism , Flavonoids/pharmacology , Glutamic Acid/metabolism , Hippocampus/metabolism , Inflammation/chemically induced , Inflammation/drug therapy , Inflammation/metabolism , Lipopolysaccharides/pharmacology , Macrophages/metabolism , Mice , Microglia/metabolism , NF-E2-Related Factor 2/metabolism , Neuroprotection/drug effects , Plant Extracts/chemistry , Plant Extracts/pharmacology , RAW 264.7 Cells , Reactive Oxygen Species/metabolism , Xanthones/pharmacology
19.
J Ethnopharmacol ; 255: 112771, 2020 Jun 12.
Article in English | MEDLINE | ID: mdl-32201300

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: As an important medicinal material constituting a variety of traditional Chinese medicine prescriptions, Nepeta angustifolia C. Y. Wu was used as a folk medicine to treat various vascular-related diseases including apoplexia, and cerebral haemorrhage in Tibet, China. Our previous studies have shown that this plant had a significant protective effect on vascular dysfunction of the intracerebral haemorrhage and diabetic rats. In present study, we aimed to investigate the protective effects and underlying mechanisms of Nepeta angustifolia on diabetic nephropathy (DN), a microvascular complication. AIM OF THE STUDY: This study is aim to evaluate the protective effect of ethanol extracts of N. angustifolia (NA) on DN, and explore mechanism of action to provide basis for its pharmacological action against DN. MATERIALS AND METHODS: High-fat diet and low-dose streptozotocin administration (HFD/STZ) induced diabetic rats were randomly divided into 5 groups (n = 8): the diabetic model group, metformin group, and three dose groups of NA (60 mg/kg, 120 mg/kg, 240 mg/kg). After administration of NA for 8 weeks, the blood, urine and renal tissue were collected for subsequent experiments. Biochemical markers (urine protein, Cr, BUN), oxidative stress makers (SOD, GSH-px and MDA) and pro-inflammatory mediators (TNF-α, IL-1ß, IL-6 and MCP-1) were evaluated by commercial kit and ELISA, respectively. The effect of NA on DN was further confirmed by evaluation of renal histopathology by using the H&E, PAS and Masson staining. The H2O2-induced HBZY-1 cells (rat glomerular mesangial cells) were also been used to evaluate the renal protective effect of NA (50 µg/mL, 100 µg/mL, 200 µg/mL). The oxidative stress makers were detected by commercial kit. The levels of apoptosis and related proteins (caspase 3, 9) were detected by TUNEL assay and western blot analysis, respectively. The depolarization of mitochondrial membrane potential was detected by JC-1 staining assay. RESULTS: The administration of NA is helpful to maintain near normal body weight, blood glucose, urine volume, urine protein, kidney index and serum levels of Cr and BUN. NA treatment significantly improve renal dysfunction by the down-regulation of renal oxidative stress and pro-inflammatory mediators in HFD/STZ induced diabetic rats. In vitro experiments, NA has a significant cellular protective effect in H2O2-induced HBZY-1 cells, as well as the regulation in increases of SOD level and the decreases of ROS and MDA levels. Furthermore, NA treatment can significantly inhibit H2O2 induced mesangial cells apoptosis by the increasing mitochondrial potential and suppressing caspases-madiated signaling pathway. CONCLUSIONS: NA has obvious improvement on renal dysfunction in HFD/STZ induced diabetic rats. NA can protect mesangial cells by inhibiting oxidative stress induced apoptosis, which may be related to its regulation of mitochondrial-caspase apoptosis pathway.


Subject(s)
Antioxidants/pharmacology , Apoptosis/drug effects , Diabetes Mellitus, Experimental/drug therapy , Diabetic Nephropathies/drug therapy , Mesangial Cells/drug effects , Nepeta , Oxidative Stress/drug effects , Plant Extracts/pharmacology , Animals , Antioxidants/isolation & purification , Cell Line , Diabetes Mellitus, Experimental/chemically induced , Diabetes Mellitus, Experimental/metabolism , Diabetic Nephropathies/etiology , Diabetic Nephropathies/metabolism , Diabetic Nephropathies/pathology , Diet, High-Fat , Inflammation Mediators/metabolism , Male , Membrane Potential, Mitochondrial/drug effects , Mesangial Cells/metabolism , Mesangial Cells/pathology , Mitochondria/drug effects , Mitochondria/metabolism , Mitochondria/pathology , Nepeta/chemistry , Plant Extracts/isolation & purification , Rats, Sprague-Dawley , Streptozocin
20.
Am J Chin Med ; 48(2): 445-462, 2020.
Article in English | MEDLINE | ID: mdl-32138531

ABSTRACT

As a long-established medicinal and edible homologous plant, Taraxacum officinale Wigg. is widely distributed in Asia, Europe, and other parts of the world. T. officinale is reported to exert a variety of biological and pharmacological activities, including anticancer, hepatoprotective, and anti-obesity effects. In this study, we evaluated the anti-inflammatory effects of ethanol extracts of T. officinale (A-TOW) by examining the suppression of proinflammatory mediators in LPS-stimulated BV2 and mouse hippocampus. Furthermore, A-TOW also inhibited the nuclear translocation of nuclear factor κB p65 caused by stimulation with LPS. In addition, A-TOW regulates heme oxygenase (HO)-1 expression through the nuclear translocation of nuclear factor E2-related factor 2 (Nrf2) in BV2 cells. The effects of A-TOW on the over-expression of proinflammatory mediators were partially reversed by transfection of the cells with HO-1 siRNA. These findings suggest that the potent anti-inflammatory activity of T. officinale, possibly through the regulation of Nrf2/HO-1 and NF-κB signaling pathway.


Subject(s)
Anti-Inflammatory Agents , Heme Oxygenase-1/metabolism , Membrane Proteins/metabolism , Microglia/metabolism , NF-E2-Related Factor 2/metabolism , NF-kappa B/metabolism , Plant Extracts/pharmacology , Signal Transduction/drug effects , Taraxacum/chemistry , Animals , Cells, Cultured , Mice , Phytotherapy , Plant Extracts/therapeutic use
SELECTION OF CITATIONS
SEARCH DETAIL