Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters

Database
Language
Journal
Affiliation country
Publication year range
1.
Neuron ; 108(4): 691-706.e10, 2020 11 25.
Article in English | MEDLINE | ID: mdl-32905785

ABSTRACT

Sensory discrimination is essential for survival. However, how sensory information is finely controlled in the brain is not well defined. Here, we show that astrocytes control tactile acuity via tonic inhibition in the thalamus. Mechanistically, diamine oxidase (DAO) and the subsequent aldehyde dehydrogenase 1a1 (Aldh1a1) convert putrescine into GABA, which is released via Best1. The GABA from astrocytes inhibits synaptically evoked firing at the lemniscal synapses to fine-tune the dynamic range of the stimulation-response relationship, the precision of spike timing, and tactile discrimination. Our findings reveal a novel role of astrocytes in the control of sensory acuity through tonic GABA release.


Subject(s)
Astrocytes/physiology , Neural Inhibition/physiology , Thalamus/physiology , Touch Perception/physiology , gamma-Aminobutyric Acid/physiology , Aldehyde Dehydrogenase 1 Family/metabolism , Amine Oxidase (Copper-Containing)/metabolism , Animals , Astrocytes/metabolism , Astrocytes/ultrastructure , Bestrophins/biosynthesis , Bestrophins/genetics , Female , GABA Antagonists , Immunohistochemistry , Inhibitory Postsynaptic Potentials/physiology , Macrolides/pharmacology , Male , Mice , Mice, Knockout , Microscopy, Electron , Neurons/metabolism , Neurons/physiology , Patch-Clamp Techniques , Picrotoxin/pharmacology , Primary Cell Culture , Pyridazines/pharmacology , RNA, Small Interfering/pharmacology , Retinal Dehydrogenase/metabolism , gamma-Aminobutyric Acid/biosynthesis , gamma-Aminobutyric Acid/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL