Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 42
Filter
1.
Antioxidants (Basel) ; 11(12)2022 Nov 23.
Article in English | MEDLINE | ID: mdl-36552528

ABSTRACT

Hyperglycemia has various adverse health effects, some of which are due to chronic oxidative and inflammatory impairment of bone marrow (BM), hematopoietic stem cells (HSCs), and mesenchymal stem cells (MSCs). Astaxanthin (ASTX) has been shown to ameliorate hyperglycemia-associated systemic complications and acute mortality, and this effect is partially associated with restoration of normal hematopoiesis. Here, the effects of ASTX on diabetes-induced complications in BM and BM stem cells were investigated, and the underlying molecular mechanisms were elucidated. Ten-week-old C57BL/6 mice received a single intraperitoneal injection of streptozotocin (STZ; 150 mg/kg) in combination with oral gavage of ASTX (12.5 mg/kg) for 30 or 60 consecutive days. Supplemental ASTX ameliorated acute mortality and restored the STZ-impaired bone mass accrual and BM microenvironment in STZ-injected mice. Oral gavage of ASTX suppressed osteoclast formation in the BM of STZ-injected mice. Specifically, supplementation with ASTX inhibited oxidative stress and senescence induction of BM HSCs and MSCs and ameliorated hematopoietic disorders in STZ-injected mice. These effects of ASTX were associated with BM restoration of angiopoietin 1, stromal cell-derived factor 1, ß-catenin, and Nrf2. Long-term ASTX gavage also recovered the STZ-induced dysfunction in migration, colony formation, and mineralization of BM-derived stromal cells. Further, a direct addition of ASTX exhibited direct and dose-dependent inhibition of osteoclastic activation without cytotoxic effects. Collectively, these results indicate that ASTX protects against diabetes-induced damage in the BM microenvironment in BM, HSCs, and MSCs and restores normal hematopoiesis and bone accrual in STZ-injected mice.

2.
Mater Sci Eng C Mater Biol Appl ; 135: 112673, 2022 Apr.
Article in English | MEDLINE | ID: mdl-35581065

ABSTRACT

Scaffolds combined with bioactive agents can enhance bone regeneration at therapeutic sites. We explore whether combined supplementation with coumaric acid and recombinant human-cartilage oligomeric matrix protein-angiopoietin 1 (rhCOMP-Ang1) is an ideal approach for bone tissue engineering. We developed coumaric acid-conjugated absorbable collagen scaffold (CA-ACS) and investigated whether implanting CA-ACS in combination with rhCOMP-Ang1 facilitates ACS- or CA-ACS-mediated bone formation using a rat model of critically sized mandible defects. We examined the mechanisms by which coumaric acid and rhCOMP-Ang1 regulate behaviors of human periodontal ligament fibroblasts (hPLFs). The CA-ACS exhibits greater anti-degradation and mechanical strength properties than does ACS alone. Implanting CA-ACS loaded with rhCOMP-Ang1 greatly enhances bone regeneration at the defect via the activation of angiogenic, osteogenic, and anti-osteoclastic responses compared with other rat groups implanted with an ACS alone or CA-ACS. Treatment with both rhCOMP-Ang1 and coumaric acid increases proliferation, mineralization, and migration of cultured hPLFs via activation of the Ang1/Tie2 signaling axis at a greater rate than treatment with either of them alone. Collectively, this study demonstrates that CA-ACS impregnated with rhCOMP-Ang1 enhances bone regeneration at therapeutic sites, and this enhancement is associated with a synergistic interaction between rhCOMP-Ang1-mediated angiogenesis and coumaric acid-related antioxidant responses.


Subject(s)
Angiopoietin-1 , Antioxidants , Angiopoietin-1/metabolism , Angiopoietin-1/pharmacology , Animals , Antioxidants/pharmacology , Cartilage Oligomeric Matrix Protein , Collagen/pharmacology , Coumaric Acids , Mandible , Rats
3.
Nutrients ; 13(10)2021 Oct 12.
Article in English | MEDLINE | ID: mdl-34684576

ABSTRACT

Numerous studies highlight that astaxanthin (ASTX) ameliorates hyperglycemic condition and hyperglycemia-associated chronic complications. While periodontitis and periodontic tissue degradation are also triggered under chronic hyperglycemia, the roles of ASTX on diabetes-associated periodontal destruction and the related mechanisms therein are not yet fully understood. Here, we explored the impacts of supplemental ASTX on periodontal destruction and systemic complications in type I diabetic mice. To induce diabetes, C57BL/6 mice received a single intraperitoneal injection of streptozotocin (STZ; 150 mg/kg), and the hyperglycemic mice were orally administered with ASTX (12.5 mg/kg) (STZ+ASTX group) or vehicle only (STZ group) daily for 60 days. Supplemental ASTX did not improve hyperglycemic condition, but ameliorated excessive water and feed consumptions and lethality in STZ-induced diabetic mice. Compared with the non-diabetic and STZ+ASTX groups, the STZ group exhibited severe periodontal destruction. Oral gavage with ASTX inhibited osteoclastic formation and the expression of receptor activator of nuclear factor (NF)-κB ligand, 8-OHdG, γ-H2AX, cyclooxygenase 2, and interleukin-1ß in the periodontium of STZ-injected mice. Supplemental ASTX not only increased the levels of nuclear factor erythroid 2-related factor 2 (Nrf2) and osteogenic transcription factors in the periodontium, but also recovered circulating lymphocytes and endogenous antioxidant enzyme activity in the blood of STZ-injected mice. Furthermore, the addition of ASTX blocked advanced glycation end products-induced oxidative stress and growth inhibition in human-derived periodontal ligament cells by upregulating the Nrf2 pathway. Together, our results suggest that ASTX does not directly improve hyperglycemia, but ameliorates hyperglycemia-triggered periodontal destruction and oxidative systemic complications in type I diabetes.


Subject(s)
Antioxidants/metabolism , Diabetes Mellitus, Experimental/complications , NF-E2-Related Factor 2/metabolism , Oxidative Stress , Periodontitis/drug therapy , Periodontitis/etiology , Streptozocin/administration & dosage , Adolescent , Alveolar Process/pathology , Animals , Blood Glucose/metabolism , Catalase/blood , Cell Proliferation , Cytokines/metabolism , DNA Damage , Diabetes Mellitus, Experimental/blood , Dietary Supplements , Feeding Behavior , Glycation End Products, Advanced/metabolism , Humans , Hyperglycemia/complications , Inflammation Mediators/metabolism , Injections , Lymphocytes/immunology , Male , Mice, Inbred C57BL , Osteoclasts/drug effects , Osteoclasts/pathology , Periodontal Ligament/pathology , Periodontitis/blood , Reactive Oxygen Species/metabolism , Superoxide Dismutase/blood , Up-Regulation , Xanthophylls/pharmacology , Xanthophylls/therapeutic use , Young Adult
4.
J Periodontal Res ; 54(6): 690-701, 2019 Dec.
Article in English | MEDLINE | ID: mdl-31328274

ABSTRACT

OBJECTIVE: Dietary bioactive materials having anti-inflammatory and antioxidant potentials are able to inhibit diabetes-associated periodontal complications. Although numerous studies indicate that administration of p-coumaric acid (p-CA) ameliorates diabetes and diabetes-related complications, the roles of p-CA on periodontal tissue destruction in diabetic mice and the possible mechanisms therein are not completely understood. In this study, we evaluated whether supplementation with p-CA protects mice against diabetes-associated spontaneous periodontal destruction and also explored the associated mechanism therein using in vivo and in vitro experimental systems. MATERIALS AND METHODS: C57BL/6 male mice were divided into sham, streptozotocin (STZ), and STZ+CA groups (n = 5/group). Sham group was intraperitoneally injected with sodium buffer, whereas other two groups were injected with the buffer containing 160 mg/kg of STZ. STZ-induced diabetic mice received oral gavage with p-CA (50 mg/kg) (STZ+CA group) or with buffer only (STZ group) daily for 6 weeks. The effect of p-CA on diabetes-associated spontaneous periodontal destruction was evaluated using µCT analysis, hematoxylin and eosin staining, tartrate-resistant acid phosphatase staining, and immunohistochemical staining methods. The efficacies of p-CA on cell proliferation, osteoblast differentiation, reactive oxygen species (ROS) accumulation, and antioxidant-related marker expression were examined using human periodontal ligament fibroblasts (hPLFs) cultured under high glucose condition. RESULTS: Streptozotocin group exhibited periodontal tissue destruction along with increased inflammation, oxidative stress, and osteoclast formation, as well as with decreased osteogenesis. However, oral administration with p-CA protected mice against STZ-induced periodontal destruction by inhibiting inflammation and osteoclastic activation. STZ+CA group also showed higher expression of antioxidant and osteogenic markers in periodontal tissue than did STZ group. Treatment with high glucose concentration (30 mmol/L) impaired proliferation and osteoblast differentiation of hPLFs along with cellular ROS accumulation, whereas these impairments were almost completely disappeared by supplementation with p-CA. CONCLUSION: These findings demonstrate that supplementation with p-CA inhibits diabetes-associated spontaneous destruction of periodontal tissue by enhancing anti-inflammatory, anti-osteoclastogenic, and antioxidant defense systems in STZ-treated mice.


Subject(s)
Diabetes Mellitus, Experimental/complications , Dietary Supplements , Oxidative Stress , Periodontal Diseases/drug therapy , Propionates/pharmacology , Administration, Oral , Animals , Antioxidants/metabolism , Cells, Cultured , Coumaric Acids , Fibroblasts , Humans , Male , Mice , Mice, Inbred C57BL , Periodontal Diseases/etiology , Periodontal Ligament/cytology , Streptozocin
5.
J Bone Miner Metab ; 37(5): 900-912, 2019 Sep.
Article in English | MEDLINE | ID: mdl-30843129

ABSTRACT

Numerous studies have demonstrated the advantages of plant cell suspension culture systems in producing bioactive recombinant human growth factors. This study investigated the biological activity of recombinant basic human fibroblast growth factor (rhFGF2) protein produced by a plant culture system to enhance new bone formation in a bone defect mouse model. The human FGF2 cDNA gene was cloned into a plant expression vector driven by the rice α-amylase 3D promoter. The vector was introduced into rice calli (Oryza sativa L. cv. Dongjin), and the clone with the highest expression of rhFGF2 was selected. Maximum accumulation of rhFGF2 protein (approximately 28 mg/l) was reached at 13 day post-incubation. Male C57BL/6 mice underwent calvarial defect surgery and the defects were loaded with absorbable collagen sponge (ACS) only (ACS group) or ACS impregnated with 5 µg of plant-derived rhFGF2 (p-FGF2) protein or E. coli-derived rhFGF2 (e-FGF2) protein. Similar to the effects of e-FGF2, local delivery with p-FGF2 enhanced bone healing in the damaged region to higher levels than the ACS group. Exogenous addition of p-FGF2 or e-FGF2 exhibited similar effects on proliferation, mineralization, and osteogenic marker expression in MC3T3-E1 cells. Together, the current findings support the usefulness of this plant-based expression system for the production of biologically active rhFGF2.


Subject(s)
Dietary Supplements , Fibroblast Growth Factor 2/pharmacology , Oryza/genetics , Osteogenesis/drug effects , Recombinant Proteins/pharmacology , Skull/pathology , Amino Acid Sequence , Animals , Base Sequence , Biomarkers/metabolism , Calcification, Physiologic/drug effects , Cell Line , Cell Proliferation/drug effects , Disease Models, Animal , Escherichia coli/metabolism , Fibroblast Growth Factor 2/chemistry , Fibroblast Growth Factor 2/genetics , Fibroblast Growth Factor 2/isolation & purification , Gene Expression Regulation/drug effects , Humans , Male , Mice, Inbred C57BL , Osteoblasts/drug effects , Osteoblasts/metabolism , Plants, Genetically Modified , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/isolation & purification , Skull/drug effects
6.
Food Sci Biotechnol ; 27(6): 1823-1831, 2018 Dec.
Article in English | MEDLINE | ID: mdl-30483447

ABSTRACT

This study examined the efficacy of Atractylodes macrocephala Koidz (AMK) protein and polysaccharide extracts as adjuvant or adjuvant booster when given together with porcine pleuropneumonia vaccine. Experimental mice (n = 5/group) were subcutaneously immunized with 25 µg ApxIIA #3 antigen, a target protein against A. pleuropneumoniae, together with alum and/or various concentrations (0-500 µg) of the AMK extracts, while the control group received PBS only. Immunization with ApxIIA #3 antigen increased the antigen-specific IgG titer and this increase was enhanced in the immunization together with AMK protein, but not polysaccharide extract. Supplementation of AMK protein extract exhibited dose-dependent increases in the antigen-induced protective immunity against A. pleuropneumoniae challenge and in the lymphocyte proliferation specific to the antigen. Glycoproteins present in the AMK extract were the active components responsible for immune response induction. Collectively, the present findings suggest that AMK glycoproteins are useful as immune stimulating adjuvant or adjuvant booster.

7.
J Med Food ; 20(10): 1011-1021, 2017 Oct.
Article in English | MEDLINE | ID: mdl-28816630

ABSTRACT

Traditional herbal remedies stimulate and modulate the immune system, and it is thought that their glycoproteins and polysaccharides are responsible for this activity. We prepared crude water, protein, and polysaccharide extracts from Atractylodes macrocephala Koidz, Helianthus annuus L., Scutellaria barbata D. Don, and Hedyotis diffusa Willd, respectively, and compared their immune-stimulating activities in vitro and in vivo. All protein and polysaccharide samples of the plants led to greater lymphocyte proliferation and TNF-α and IL-6 production in cultured splenocytes than did the crude water extracts at the same concentrations tested. In addition, the protein and polysaccharide samples did not contain lectin- or lipopolysaccharide-like molecules, so glycoproteins were deduced to be responsible for the lymphocyte stimulation. Oral administration with each of the samples enhanced the hen egg-white lysozyme (HEL)-specific humoral immune and lymphocyte proliferative responses in HEL low-responder C57BL/6 mice. Splenocytes from the mice fed the samples showed significantly greater increases in the level of IFN-γ, but not IL-4, after stimulation with HEL compared with that from the untreated control. However, higher increases in HEL-specific IgG1, IgG2b, and IgG3 rather than IgG2a were found in the mice fed the samples. These results indicate that the sample-mediated enhancement of anti-HEL-specific humoral immune responses was due to the stimulation of B lymphocytes rather than a selective priming of helper T cell populations. Collectively, we suggest that glycoproteins and/or polysaccharides of traditional herbal remedies enhance cellular and humoral immune response induction and thus could be useful for patients who need enhanced immune function.


Subject(s)
Glycoproteins/pharmacology , Immunologic Factors/pharmacology , Lymphocyte Activation/drug effects , Plant Extracts/pharmacology , Plants, Medicinal/chemistry , Polysaccharides/pharmacology , Animals , B-Lymphocytes/drug effects , B-Lymphocytes/immunology , Cells, Cultured , Immunity, Cellular/drug effects , Immunity, Humoral/drug effects , Immunoglobulin G/immunology , Interleukin-4/immunology , Male , Mice , Mice, Inbred C57BL , Muramidase/adverse effects , Muramidase/immunology , T-Lymphocytes, Helper-Inducer/drug effects , T-Lymphocytes, Helper-Inducer/immunology
8.
Pharm Biol ; 55(1): 611-619, 2017 Dec.
Article in English | MEDLINE | ID: mdl-27937124

ABSTRACT

CONTEXT: Interest has recently renewed in using Lolium multiflorum Lam. (Poaceae) (called Italian ryegrass; IRG) silage as an antioxidant and anti-inflammatory diet. OBJECTIVE: This study investigated the antioxidant, anti-inflammatory and anti-septic potential of IRG silage and identified the primary components in IRG active fractions. MATERIALS AND METHODS: Total 16 fractions were separated from the chloroform-soluble extract of IRG aerial part using Sephadex LH-20 column before HPLC analysis. Antioxidant and anti-inflammatory activities of the fractions at doses of 0-100 µg/mL were investigated using various cell-free and cell-mediated assay systems. To explore anti-septic effect of IRG fractions, female ICR and BALB/c mice orally received 40 mg/kg of phenolic acid and flavonoid-rich active fractions F7 and F8 every other day for 10 days, respectively, followed by LPS challenge. RESULTS: The active fractions showed greater antioxidant and anti-inflammatory potential compared with other fractions. IC50 values of F7 and F8 to reduce LPS-stimulated NO and TNF-α production were around 15 and 30 µg/mL, respectively. Comparison of retention times with authentic compounds through HPLC analysis revealed the presence of caffeic acid, ferulic acid, myricetin and kaempferol in the fractions as primary components. These fractions inhibited LPS-stimulated MAPK and NF-κB activation. Supplementation with F7 or F8 improved the survival rates of mice to 70 and 60%, respectively, in LPS-injected mice and reduced near completely serum TNF-α and IL-6 levels. DISCUSSION AND CONCLUSION: This study highlights antioxidant, anti-inflammatory and anti-septic activities of IRG active fractions, eventually suggesting their usefulness in preventing oxidative damage and inflammatory disorders.


Subject(s)
Anti-Infective Agents, Local/pharmacology , Anti-Inflammatory Agents/pharmacology , Antioxidants/pharmacology , Flavonoids/pharmacology , Hydroxybenzoates/pharmacology , Inflammation/prevention & control , Lolium/chemistry , Macrophages/drug effects , Plant Extracts/pharmacology , Sepsis/prevention & control , Animals , Anti-Infective Agents, Local/isolation & purification , Anti-Inflammatory Agents/isolation & purification , Antioxidants/isolation & purification , Chromatography, High Pressure Liquid , Disease Models, Animal , Female , Flavonoids/isolation & purification , Hydroxybenzoates/isolation & purification , Inflammation/chemically induced , Inflammation/metabolism , Inflammation Mediators/metabolism , Interleukin-6/metabolism , Lipopolysaccharides , Macrophages/metabolism , Mice , Mice, Inbred BALB C , Mice, Inbred ICR , Mitogen-Activated Protein Kinases/metabolism , NF-kappa B/metabolism , Nitric Oxide/metabolism , Oxidative Stress/drug effects , Phytotherapy , Plant Extracts/isolation & purification , Plants, Medicinal , RAW 264.7 Cells , Sepsis/chemically induced , Sepsis/metabolism , Silage , Solvents/chemistry , Time Factors , Tumor Necrosis Factor-alpha/metabolism
9.
J Ethnopharmacol ; 179: 55-65, 2016 Feb 17.
Article in English | MEDLINE | ID: mdl-26721217

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Water extract of Raphanus sativus L. (RSL) seeds was traditionally used to treat digestive inflammatory complaints in Korean culture. RSL seeds exerted antioxidant, anti-inflammatory, and anti-septic functions, suggesting their pharmacological potential for the treatment of inflammatory pathologies associated with oxidative stress such as inflammatory bowel disease. AIM OF THIS STUDY: We evaluated the intestinal anti-inflammatory effects of RSL seed water extract (RWE) in experimental rat models of trinitrobenzenesulphonic acid (TNBS)- or dextran sodium sulfate (DSS)-induced colitis. MATERIALS AND METHODS: RWE was characterized by determining the content of sinapic acid as a reference material and then assayed in the DSS and TNBS models of rat colitis. Male Sprague-Dawley rats were divided into 10 groups (n=7/group): non-colitic control, DSS or TNBS control, DSS colitis groups treated with RWE (100mg/kg) or mesalazine (25mg/kg), and TNBS colitis groups treated with various doses (10, 40, 70, and 100mg/kg) of RWE or mesalazine (25mg/kg). RWE or mesalazine treatment started the same day of colitis induction and rats were sacrificed 24h after the last treatment followed by histological and biochemical analyses. RESULTS: Oral administration with RWE suppressed intestinal inflammatory damages in both DSS- and TNBS-induced colitic rats. The treatment with 100mg/kg RWE recovered intestinal damages caused by TNBS or DSS to levels similar to that of mesalazine, decreasing the activity of myeloperoxidase activity and the secretion of tumor necrosis factor (TNF)-α and interleukin (IL)-1ß. RWE treatment inhibited malondialdehyde production and glutathione reduction in colon of colitis rats. The administration of RWE at dose of 100mg/kg also suppressed the TNBS- or DSS-stimulated expression of TNF-α, IL-1ß, monocyte chemotactic protein-1, inducible nitric oxide, and intercellular adhesion molecule-1. Furthermore, RWE inhibited p38 kinase and DNA-nuclear factor-κB binding activities, both of which were stimulated in the colitic rats. CONCLUSIONS: The current findings show that RWE ameliorates intestinal oxidative and inflammatory damages in DSS and TNBS models of rat colitis, suggesting its beneficial use for the treatment of intestinal inflammatory disorders.


Subject(s)
Anti-Inflammatory Agents, Non-Steroidal/therapeutic use , Colitis, Ulcerative/drug therapy , Plant Extracts/therapeutic use , Raphanus/chemistry , Animals , Body Weight/drug effects , Colitis, Ulcerative/chemically induced , Colitis, Ulcerative/pathology , Colon/pathology , Cytokines/metabolism , Dextran Sulfate , Dose-Response Relationship, Drug , Inflammation Mediators/metabolism , Male , Mesalamine/therapeutic use , Rats , Rats, Sprague-Dawley , Seeds/chemistry , Trinitrobenzenesulfonic Acid , Water
10.
J Med Food ; 18(3): 314-23, 2015 Mar.
Article in English | MEDLINE | ID: mdl-25469660

ABSTRACT

Rice (Oryza sativa L.) has been a major dietary staple worldwide for centuries. Growing interest in the beneficial effects of antioxidants has inspired investigation of rice hulls as an attractive source of chemopreventive compounds for breast cancer intervention. We prepared methanol extracts from rice hulls of three Korean bred cultivars (japonica), Ilpum, Heugjinju, and Jeogjinju, and one japonica weedy rice, WD-3. We examined the antiproliferative potential of the hull extracts on MCF-7 human breast cancer cells and the related mechanisms thereof. Hull extracts inhibited proliferation of the cells and mediated G0/G1 phase arrest by suppressing cyclins and cyclin-dependent kinases, where WD-3 extract showed the most potent. Blockage of p21 expression by small interfering RNA transfection attenuated G1 phase arrest induced by WD-3 extract. The WD-3 extract exhibited greater antioxidant potential and total phenolic compounds, compared with other rice hulls. Gas chromatography-mass spectrometry analysis for the F4 fractioned from WD-3 extract revealed that cinnamic acid derivatives were the major active constituents. The F4 fraction most potently inhibited proliferation of MCF-7 cells than WD-3 extract through the suppression of cell cycle regulatory factors. Collectively, our results suggest that the pigmented rice hulls possess greater antioxidant and chemopreventive activity against breast cancer than the other rice cultivars tested, demonstrating that WD-3 rice hulls are an attractive source of chemopreventive bioactive compounds.


Subject(s)
Antioxidants/therapeutic use , Breast Neoplasms/drug therapy , Cell Cycle Checkpoints/drug effects , Oryza/chemistry , Phytotherapy , Plant Extracts/therapeutic use , Seeds/chemistry , Antineoplastic Agents, Phytogenic/pharmacology , Antineoplastic Agents, Phytogenic/therapeutic use , Antioxidants/analysis , Antioxidants/pharmacology , Cell Proliferation/drug effects , Cyclin-Dependent Kinases/metabolism , Cyclins/metabolism , Female , G1 Phase/drug effects , Humans , MCF-7 Cells , Oryza/classification , Phenols/analysis , Phenols/pharmacology , Phenols/therapeutic use , Plant Extracts/pharmacology , Species Specificity
11.
Int Immunopharmacol ; 23(2): 726-34, 2014 Dec.
Article in English | MEDLINE | ID: mdl-25467201

ABSTRACT

The seeds of Raphanus sativus L. (RSL) have long been used as anti-inflammatory traditional medicine. However, scientific bases for the purported potential of the medicine and the associated mechanisms were barely defined. This study investigated the effects of RSL seeds on lipopolysaccharide (LPS)-stimulated inflammatory responses in vitro and in vivo. Treatment with 100 µg/ml ethyl acetate fraction (REF), which was isolated from water extract of the seeds, significantly inhibited LPS-stimulated production of nitric oxide (P < 0.05), interleukin-6 (P < 0.001), and tumor necrosis factor (TNF)-α (P < 0.001) in RAW264.7 cells. Oral supplementation with 30 mg/kg REF protected mice by 90% against LPS-induced septic death and prevented the increases of serum TNF-α and interferon-γ levels in LPS-injected mice. When REF was divided into four sub-fractions (REF-F1-F4), REF-F3 showed the greatest activity to suppress LPS-stimulated production of inflammatory mediators. We subsequently isolated an active fraction from the REF-F3 and identified sinapic acid as the main constituent. The addition of 50 µg/ml active fraction markedly inhibited LPS-stimulated production of inflammatory mediators by suppressing p38 MAPK and nuclear factor-κB activation. Furthermore, supplementation with the active fraction (10 mg/kg) improved the survival rate of LPS-injected mice by 80% of the untreated control. Additional experiments revealed that sinapic acid was the active component responsible for the anti-inflammatory potential of RSL seeds. Collectively, our current results suggest that both RSL seeds and sinapic acid may be attractive materials for treating inflammatory disorders caused by endotoxins.


Subject(s)
Anti-Inflammatory Agents/therapeutic use , MAP Kinase Signaling System/drug effects , NF-kappa B/metabolism , Plant Extracts/therapeutic use , Raphanus/chemistry , Sepsis/drug therapy , Animals , Anti-Inflammatory Agents/administration & dosage , Antioxidants/metabolism , Cell Line , Cytokines/blood , Female , Lipopolysaccharides/toxicity , Macrophages/drug effects , Macrophages/immunology , Mice, Inbred ICR , Nitric Oxide/metabolism , Plant Extracts/administration & dosage , Seeds/chemistry , Sepsis/chemically induced , Sepsis/enzymology , Sepsis/immunology
12.
J Cell Biochem ; 115(11): 1877-87, 2014 Nov.
Article in English | MEDLINE | ID: mdl-24905050

ABSTRACT

Because irradiation may cause osteoradionecrosis, antioxidant supplementation is often used to suppress irradiation-mediated injury. This study examined whether a synthetic phenethyl urea compound, (E)-1-(3,4-dihydroxyphenethyl)-3-(3,4-dihydroxystyryl)urea (DPDS-U), prevents irradiation-mediated cellular damage in MC3T3-E1 osteoblastic cells. A relatively high dose of irradiation (>4 Gy) decreased cell viability and proliferation and induced DNA damage and cell cycle arrest at the G(2)/M phase with the attendant increase of cyclin B1. Irradiation with 8 Gy induced intracellular reactive oxygen species (ROS) production and lipid peroxidation, and reduced glutathione content and superoxide dismutase activity in the cells. These events were significantly suppressed by treatment with 200 µM DPDS-U or 5 mM N-acetyl cysteine (NAC). DPDS-U or irradiation alone significantly increased heme oxygenase-1 (HO-1) expression and nuclear factor E2 p45-related factor-2 (Nrf2) nuclear translocation. Interestingly, pretreatment with DPDS-U facilitated irradiation-induced activation of the Nrf2/HO-1 pathway. The potential of DPDS-U to mediate HO-1 induction and protect against irradiation-mediated cellular damage was almost completely attenuated by transient transfection with Nrf2-specific siRNA or treatment with a pharmacological HO-1 inhibitor, zinc protoporphyrin IX. Additional experiments revealed that DPDS-U induced a radioprotective mechanism that differs from that induced by NAC through activation of Nrf2/HO-1 signaling. Collectively, our data suggest that DPDS-U-induced radioprotection is due to its dual function as an antioxidant to remove directly excessive intracellular ROS and as a prooxidant to stimulate intracellular redox-sensitive survival signal.


Subject(s)
Acetylcysteine/pharmacology , Antioxidants/pharmacology , Osteoblasts/drug effects , Osteoblasts/radiation effects , Radiation-Protective Agents/pharmacology , Urea/analogs & derivatives , Animals , Cell Line , Cell Proliferation/drug effects , Cell Proliferation/radiation effects , Gene Expression Regulation/drug effects , Gene Expression Regulation/radiation effects , Humans , Lipid Peroxidation/drug effects , Lipid Peroxidation/radiation effects , Mice , Osteoblasts/cytology , Reactive Oxygen Species/metabolism , Styrenes/pharmacology , Urea/pharmacology
13.
BMC Biotechnol ; 14: 54, 2014 Jun 11.
Article in English | MEDLINE | ID: mdl-24917384

ABSTRACT

BACK GROUND: Intramuscular fat deposition in the meat animal is relatively new strategy for developing the meat quality. Fat deposition is largely depending on the adipocyte proliferation and differentiation. Therefore, we investigated the effect of chloroform extract of L. multiflorum [CELM] on cell proliferation, lipid accumulation and adipocyte differentiation in 3T3-L1 cells and body weight of mouse. RESULTS: We identified 6,9-Octadecatrienoic acid, Hexadecanoic acid, 2-hydroxypropanoic acid, butane-2,3-diol and hexane-1,2,3,4,5,6-hexaol in CELM. L. multiflorum extract increased the cell viability, lipid accumulation, cell cycle progression and key transcriptional and secretory factors like PPRAγ2, C/CEBP-α, adiponectin, aP2, GLUT-4, FAS and SREBP-1 mRNA expression as compared with control cells. For in-vivo, mice administered with CELM significantly increased body weight throughout the experiment periods. Further, the identified fatty acids like 3, 6, 9-Octadecatrienoic acid and Hexadecanoic acid was docked with target protein [PPRAγ2] using HEX 6.12. The least binding energy considered as high affinity with target protein. The maximum affinity with the target protein was observed in the Hexadecanoic acid followed by 3, 6, 9-Octadecatrienoic acid. The binding efficacy of Hexadecanoic acid and 3, 6, 9-Octadecatrienoic acid to the active site of PPAR-γ2 may be enhanced the adipocyte differentiations. CONCLUSION: These findings suggest that CELM stimulates adipogenesis via activating the PPARγ-mediated signaling pathway in adipocyte which could be useful for the development of meat quality in animals.


Subject(s)
Adipogenesis/drug effects , Lolium/chemistry , Plant Extracts/pharmacology , 3T3-L1 Cells , Animals , Binding Sites , Cell Cycle Checkpoints/drug effects , Cell Survival/drug effects , Gene Expression Regulation , Lipid Metabolism/drug effects , Lolium/metabolism , Mice , Mice, Inbred ICR , Molecular Docking Simulation , PPAR gamma/chemistry , PPAR gamma/genetics , PPAR gamma/metabolism , Plant Extracts/chemistry , Protein Structure, Tertiary , RNA, Messenger/metabolism
14.
PLoS One ; 9(1): e85297, 2014.
Article in English | MEDLINE | ID: mdl-24454838

ABSTRACT

Adipogenesis is very much important in improving the quality of meat in animals. The aim of the present study was to investigate the in vitro and in vivo adipogenesis regulation properties of Lolium multiflorum on 3T3-L1 pre-adipocytes and mice. Chemical composition of petroleum ether extract of L. multiflorum (PET-LM) confirmed the presence of fatty acids, such as α-linolenic acid, docosahexaenoic acid, oleic acid, docosatetraenoic acid, and caprylic acid, as the major compounds. PET-LM treatment increased viability, lipid accumulation, lipolysis, cell cycle progression, and DNA synthesis in the cells. PET-LM treatment also augmented peroxysome proliferator activated receptor (PPAR)-γ2, CCAAT/enhancer binding protein-α, adiponectin, adipocyte binding protein, glucose transporter-4, fatty acid synthase, and sterol regulatory element binding protein-1 expression at mRNA and protein levels in differentiated adipocytes. In addition, mice administered with 200 mg/kg body weight PET-LM for 8 weeks showed greater body weight than control mice. These findings suggest that PET-LM facilitates adipogenesis by stimulating PPARγ-mediated signaling cascades in adipocytes which could be useful for quality meat development in animals.


Subject(s)
Adipocytes/cytology , Adipogenesis/drug effects , Lolium/chemistry , 3T3-L1 Cells , Adipocytes/drug effects , Adipocytes/metabolism , Adipogenesis/genetics , Administration, Oral , Alkanes , Animals , Cell Cycle/drug effects , Cell Differentiation/drug effects , Chromatography, Liquid , DNA/biosynthesis , Dietary Supplements , Female , Flow Cytometry , Gene Expression Regulation/drug effects , Glycerol/metabolism , Lipid Metabolism/drug effects , Mass Spectrometry , Mice , Mice, Inbred ICR , Plant Extracts , RNA, Messenger/genetics , RNA, Messenger/metabolism , Weight Gain/drug effects
15.
J Periodontol ; 85(4): 645-54, 2014 Apr.
Article in English | MEDLINE | ID: mdl-23805819

ABSTRACT

BACKGROUND: Periodontal ligament fibroblasts (PLFs) maintain homeostasis of periodontal ligaments by producing paracrine factors that affect various functions of stem-like cells. It is hypothesized that PLFs induce proliferation and differentiation of stem cells more effectively than gingival fibroblasts (GFs) and skin fibroblasts (SFs). METHODS: PLFs and GFs were isolated from extracted teeth and cultured in the presence and absence of osteogenesis-inducing factors. Mouse embryonic stem (mES) cells and SFs were purchased commercially. mES cells were incubated with culture supernatants of these fibroblasts or cocultured directly with the cells. Proliferation and mineralization in mES cells were determined at various times of incubation. Immunostaining and polymerase chain reaction were performed. The activity of mitogen-activated protein kinase and alkaline phosphatase (ALP) was also measured. RESULTS: In cocultures, PLFs stimulated proliferation of mES cells more effectively than GFs or SFs. Similarly, the addition of culture supernatant of PLFs induced the most prominent proliferation of mES cells, and this was significantly inhibited by treatment with antibody against fibroblast growth factor (FGF)4 or the c-Jun N-terminal kinase inhibitor SP600125 (anthra[1,9-cd]pyrazol-6(2H)-one). Supplementation with culture supernatant from the fibroblasts induced osteogenic differentiation of mES cells in the order PLFs > GFs > SFs. These activities of PLFs were related to their potential to produce osteogenic markers, such as ALP and runt-related transcription factor-2 (Runx2), and to secrete FGF7. Pretreatment of mES cells with the extracellular signal-regulated kinase inhibitor PD98059 [2-(2-amino-3-methyoxyphenyl)-4H-1-benzopyran-4-one] or SP600125 clearly attenuated mineralization induced by culture supernatant of PLF with attendant decreases in mRNA levels of Runx2, bone sialoprotein, osteocalcin, and osteopontin. CONCLUSION: PLFs regulate the proliferation and osteogenic differentiation of mES cells more strongly than GFs and SFs via the secretion of FGF through a mechanism that involves mitogen-activated protein kinase-mediated signaling.


Subject(s)
Embryonic Stem Cells/physiology , Fibroblast Growth Factors/physiology , Fibroblasts/physiology , Osteogenesis/physiology , Periodontal Ligament/cytology , Alkaline Phosphatase/analysis , Animals , Anthracenes/pharmacology , Calcium-Calmodulin-Dependent Protein Kinases/antagonists & inhibitors , Cell Culture Techniques , Cell Differentiation/physiology , Cell Line , Cell Proliferation , Coculture Techniques , Core Binding Factor Alpha 1 Subunit/analysis , Culture Media, Conditioned , Fibroblast Growth Factor 4/antagonists & inhibitors , Fibroblast Growth Factor 7/analysis , Fibroblast Growth Factors/analysis , Flavonoids/pharmacology , Gingiva/cytology , JNK Mitogen-Activated Protein Kinases/antagonists & inhibitors , MAP Kinase Signaling System/physiology , Mice , Mitogen-Activated Protein Kinases/analysis , Osteocalcin/analysis , Osteopontin/analysis , Skin/cytology
16.
Phytomedicine ; 21(5): 758-65, 2014 Apr 15.
Article in English | MEDLINE | ID: mdl-24369814

ABSTRACT

Trigonelline is a natural alkaloid mainly found in Trigonella Foenum Graecum (fenugreek) Fabaceae and other edible plants with a variety of medicinal applications. Therefore, we investigated the molecular mechanism of trigonelline (TG) on the inhibition of adipocyte differentiation and lipid accumulation in 3T3-L1 cells. Trigonelline suppressed lipid droplet accumulation in a concentration (75 and 100 µM) dependent manner. Treatment of adipocyte with of TG down regulates the peroxisome proliferator-activated receptor (PPARγ) and CCAAT element binding protein (C/EBP-α) mRNA expression, which leads to further down regulation of other gene such as adiponectin, adipogenin, leptin, resistin and adipocyte fatty acid binding protein (aP2) as compared with respective control cells on 5th and 10th day of differentiation. Further, addition of triognelline along with troglitazone to the adipocyte attenuated the troglitazone effects on PPARγ mediated differentiation and lipid accumulation in 3T3-L1 cells. Trigonelline might compete against troglitazone for its binding to the PPARγ. In addition, adipocyte treated with trigonelline and isoproterenol separately. Isoproterenol, a lipolytic agent which inhibits the fatty acid synthase and GLUT-4 transporter expression via cAMP mediated pathway, we found that similar magnitude response of fatty acid synthase and GLUT-4 transporter expression in trigonelline treated adipocyte. These results suggest that the trigonelline inhibits the adipogenesis by its influences on the expression PPARγ, which leads to subsequent down regulation of PPAR-γ mediated pathway during adipogenesis. Our findings provide key approach to the mechanism underlying the anti-adipogenic activity of trigonelline.


Subject(s)
Adipogenesis/drug effects , Alkaloids/therapeutic use , Obesity/drug therapy , Phytotherapy , Trigonella , 3T3-L1 Cells , Adipocytes/drug effects , Adipocytes/metabolism , Alkaloids/pharmacology , Animals , Cell Proliferation/drug effects , Drug Evaluation, Preclinical , Fatty Acid Synthases/metabolism , Gene Expression/drug effects , Glucose Transporter Type 4/metabolism , Lipid Metabolism/drug effects , Mice , PPAR gamma/metabolism , Plant Extracts/pharmacology , Plant Extracts/therapeutic use
17.
PLoS One ; 8(12): e80873, 2013.
Article in English | MEDLINE | ID: mdl-24324641

ABSTRACT

Numerous studies have reported that inflammatory cytokines are important mediators for osteoclastogenesis, thereby causing excessive bone resorption and osteoporosis. Acteoside, the main active compound of Rehmannia glutinosa, which is used widely in traditional Oriental medicine, has anti-inflammatory and antioxidant potentials. In this study, we found that acteoside markedly inhibited osteoclast differentiation and formation from bone marrow macrophages (BMMs) and RAW264.7 macrophages stimulated by the receptor activator of nuclear factor-kappaB (NF-κB) ligand (RANKL). Acteoside pretreatment also prevented bone resorption by mature osteoclasts in a dose-dependent manner. Acteoside (10 µM) attenuated RANKL-stimulated activation of p38 kinase, extracellular signal-regulated kinases, and c-Jun N-terminal kinase, and also suppressed NF-κB activation by inhibiting phosphorylation of the p65 subunit and the inhibitor κBα. In addition, RANKL-mediated increases in the expression of c-Fos and nuclear factor of activated T-cells, cytoplasmic 1 (NFATc1) and in the production of tumor necrosis factor-α, interleukin (IL)-1ß, and IL-6 were apparently inhibited by acteoside pretreatment. Further, oral acteoside reduced ovariectomy-induced bone loss and inflammatory cytokine production to control levels. Our data suggest that acteoside inhibits osteoclast differentiation and maturation from osteoclastic precursors by suppressing RANKL-induced activation of mitogen-activated protein kinases and transcription factors such as NF-κB, c-Fos, and NFATc1. Collectively, these results suggest that acteoside may act as an anti-resorptive agent to reduce bone loss by blocking osteoclast activation.


Subject(s)
Antioxidants/pharmacology , Bone Resorption/prevention & control , Glucosides/pharmacology , NF-kappa B/antagonists & inhibitors , Osteoclasts/drug effects , Phenols/pharmacology , Proto-Oncogene Proteins c-fos/antagonists & inhibitors , RANK Ligand/antagonists & inhibitors , Animals , Bone Marrow Cells/cytology , Bone Marrow Cells/drug effects , Bone Marrow Cells/metabolism , Cell Differentiation , Cell Survival/drug effects , Female , Gene Expression Regulation , Interleukin-1beta/antagonists & inhibitors , Interleukin-1beta/biosynthesis , Interleukin-6/antagonists & inhibitors , Interleukin-6/biosynthesis , Macrophages/cytology , Macrophages/drug effects , Macrophages/metabolism , Mice , Mice, Inbred ICR , NF-kappa B/genetics , NF-kappa B/metabolism , NFATC Transcription Factors/antagonists & inhibitors , NFATC Transcription Factors/genetics , NFATC Transcription Factors/metabolism , Osteoclasts/cytology , Osteoclasts/metabolism , Ovariectomy , Proto-Oncogene Proteins c-fos/genetics , Proto-Oncogene Proteins c-fos/metabolism , RANK Ligand/genetics , RANK Ligand/metabolism , Reactive Oxygen Species/antagonists & inhibitors , Reactive Oxygen Species/metabolism , Signal Transduction , Tumor Necrosis Factor-alpha/antagonists & inhibitors , Tumor Necrosis Factor-alpha/biosynthesis , p38 Mitogen-Activated Protein Kinases/antagonists & inhibitors , p38 Mitogen-Activated Protein Kinases/genetics , p38 Mitogen-Activated Protein Kinases/metabolism
18.
Pharm Biol ; 51(8): 1066-76, 2013 Aug.
Article in English | MEDLINE | ID: mdl-23746221

ABSTRACT

CONTEXT: Recently, there has been renewed interest in barley (Hordeum vulgare L. Poaceae) as a functional food and for its medicinal properties. OBJECTIVE: This study examines the anti-inflammatory potential of the active fractions of barley and the mechanisms involved. MATERIALS AND METHODS: The macrophages were exposed to 100 µg/mL of each of the barley extracts in the presence of 1 µg/mL lipopolysaccharide (LPS) and after 24 or 48 h of incubation, cells or culture supernatants were analyzed by various assays. The anti-inflammatory potential of barley fractions was also investigated using the LPS-injected septic mouse model. The active constituents in the fractions were identified using gas chromatography-mass spectrometry (GC-MS). RESULTS: The active fractions, named F4, F7, F9 and F12, inhibited almost completely the LPS-induced production of nitric oxide (NO) and inducible NO synthase. Pre-treatment with these fractions at 100 µg/mL diminished the tumor necrosis factor-α (TNF-α) levels to 19.8, 3.5, 1.2 and 1.7 ng/mL, respectively, compared to LPS treatment alone (41.5 ng/mL). These fractions at 100 µg/mL also suppressed apparently the secretion of interleukin (IL)-6 and IL-1ß and the DNA-binding activity of nuclear factor-κB in LPS-stimulated cells. Mice injected intraperitoneally with LPS (30 mg/kg BW) showed 20% survival at 48 h after injection, whereas oral administration of the fractions improved the survival rates to 80%. GC-MS analysis revealed the presence of the derivatives of benzoic and cinnamic acids and fatty acids in the fractions. DISCUSSION AND CONCLUSION: The aerial parts of barley are useful as functional food to prevent acute inflammatory responses.


Subject(s)
Anti-Inflammatory Agents/pharmacology , Hordeum/chemistry , Inflammation/drug therapy , Plant Extracts/pharmacology , Animals , Anti-Inflammatory Agents/isolation & purification , Disease Models, Animal , Female , Gas Chromatography-Mass Spectrometry , Inflammation/physiopathology , Lipopolysaccharides , Methanol/chemistry , Mice , Mice, Inbred BALB C , Nitric Oxide/metabolism , Nitric Oxide Synthase Type II/drug effects , Nitric Oxide Synthase Type II/metabolism , Plant Components, Aerial , Plant Extracts/chemistry , Sepsis/drug therapy , Sepsis/physiopathology , Survival Rate , Time Factors
19.
J Med Food ; 16(5): 410-20, 2013 May.
Article in English | MEDLINE | ID: mdl-23631491

ABSTRACT

Alfalfa (Medicago sativa L.) is commonly used as a traditional medicine and functional food. This study investigated the anti-inflammatory potential of alfalfa and the mechanisms involved. The chloroform extract of alfalfa aerial parts inhibited lipopolysaccharide (LPS)-stimulated immune responses more than ether, butanol, or water soluble extracts. Treatment with 1 µg/mL LPS increased nitrite concentrations to 44.3 µM in RAW267.4 macrophages, but it was reduced to 10.6 µM by adding 100 µg/mL chloroform extract. LPS treatment also increased the concentrations of tumor necrosis factor-α, interleukin (IL)-6, and IL-1ß to 41.3, 11.6, and 0.78 ng/mL in culture supernatants of the cells, but these cytokine levels decreased to 12.5, 3.1, and 0.19 ng/mL, respectively, by pretreating with 100 µg/mL of the extract. ICR mice injected with LPS (30 mg/kg body weight) alone showed a 0% survival rate after 48 h of the injection, but 48-h survival of the mice increased to 60% after oral administration of the extract. Subfractions of the chloroform extract markedly suppressed LPS-mediated activation of the extracellular signal-regulated kinase and nuclear factor kappa-B. Cinnamic acid derivatives and fatty acids were found to be active constituents of the extract. This research demonstrated that alfalfa aerial parts exert anti-inflammatory activity and may be useful as a functional food for the prevention of inflammatory disorders.


Subject(s)
Anti-Inflammatory Agents/administration & dosage , Down-Regulation/drug effects , Extracellular Signal-Regulated MAP Kinases/genetics , Inflammation/drug therapy , Lipopolysaccharides/adverse effects , Medicago sativa/chemistry , NF-kappa B/genetics , Plant Extracts/administration & dosage , Animals , Anti-Inflammatory Agents/isolation & purification , Cell Line , Cytokines/genetics , Cytokines/immunology , Extracellular Signal-Regulated MAP Kinases/immunology , Female , Humans , Inflammation/genetics , Inflammation/immunology , Macrophages/drug effects , Macrophages/immunology , Mice , Mice, Inbred BALB C , Mice, Inbred ICR , NF-kappa B/immunology , Plant Extracts/isolation & purification , Signal Transduction/drug effects
20.
Pharm Biol ; 50(4): 420-8, 2012 Apr.
Article in English | MEDLINE | ID: mdl-22129367

ABSTRACT

CONTEXT: Ginkgo biloba L. (Ginkgoaceae) leaves have been used as an herbal medicine that has a complex range of biological activities. However, when we consider that biological activity of plant extracts is highly variable according to the source, location, and harvest season, technology to obtain the natural products with homogeneity is extremely important. OBJECTIVE: We established the technology to obtain the cambial meristematic cells (CMCs) of Ginkgo biloba, which were expanded in vitro with homogeneity through a suspension culture and then determined the anti-inflammatory activity of fractionated samples prepared from the ethanol extract of CMCs. MATERIALS AND METHODS: We determined the anti-inflammatory activity of samples using lipopolysaccharide (LPS)-stimulated RAW 264.7 macrophage cells. Especially, influence of sample treatment on the expression of various indicators, such as nitric oxide (NO), inducible nitric oxide synthase (iNOS), cyclooxygenase (COX)-2, mitogen-activated protein (MAP) kinases, transcription factor, and cytokines, involved in inflammatory activity was assessed. RESULTS: A fractionated sample demonstrated 53.4% inhibition of LPS-induced NO production from the cells. Additionally, when fractionated samples were treated, iNOS and COX-2 expressions were almost completely suppressed. Fractionated samples also inhibited the phosphorylation of LPS-induced extracellular signal-regulated (ERK) and p38 MAP kinases more than 60%. IκB phosphorylation and subsequent nuclear factor (NF)-κB activation were also suppressed by fractionated samples. The expression of pro-inflammatory cytokines, IL-6 and tumor necrosis factor (TNF)-α, was significantly inhibited by the sample treatment. DISCUSSION AND CONCLUSION: Fractionated samples from the ethanol extract of Ginkgo biloba CMCs could potentially be the source of a powerful anti-inflammatory substance.


Subject(s)
Anti-Inflammatory Agents/pharmacology , Ginkgo biloba , Inflammation Mediators/metabolism , Lipopolysaccharides/pharmacology , Macrophages/drug effects , Plant Extracts/pharmacology , Plants, Medicinal , Animals , Anti-Inflammatory Agents/chemistry , Anti-Inflammatory Agents/isolation & purification , Cell Line , Cell Survival/drug effects , Chemical Fractionation , Cyclooxygenase 2/metabolism , Ethanol/chemistry , Ginkgo biloba/chemistry , Ginkgo biloba/cytology , I-kappa B Proteins/metabolism , Interleukin-6/metabolism , Macrophages/immunology , Meristem , Mice , Mitogen-Activated Protein Kinases/metabolism , NF-kappa B/metabolism , Nitric Oxide/metabolism , Nitric Oxide Synthase Type II/metabolism , Phosphorylation , Plant Extracts/chemistry , Plant Extracts/isolation & purification , Solvents/chemistry , Tumor Necrosis Factor-alpha/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL