Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Publication year range
1.
Theranostics ; 11(1): 79-92, 2021.
Article in English | MEDLINE | ID: mdl-33391462

ABSTRACT

Transarterial chemoembolization (TACE) is an image-guided locoregional therapy used for the treatment of patients with primary or secondary liver cancer. However, conventional TACE formulations are rapidly dissociated due to the instability of the emulsion, resulting in insufficient local drug concentrations in the target tumor. Methods: To overcome these limitations, a doxorubicin-loaded albumin nanoparticle-conjugated microbubble complex in an iodized oil emulsion (DOX-NPs-MB complex in Lipiodol) has been developed as a new ultrasound-triggered TACE formulation. Results: (1) Microbubbles enhanced therapeutic efficacy by effectively delivering doxorubicin- loaded nanoparticles into liver tumors via sonoporation under ultrasound irradiation (US+). (2) Microbubbles constituting the complex retained their function as an ultrasound contrast agent in Lipiodol. In a rabbit VX2 liver cancer model, the in vivo study of DOX-NPs-MB complex in Lipiodol (US+) decreased the viability of tumor more than the conventional TACE formulation, and in particular, effectively killed cancer cells in the tumor periphery. Conclusion: Incorporation of doxorubicin-loaded microbubble in the TACE formulation facilitated drug delivery to the tumor with real-time monitoring and enhanced the therapeutic efficacy of TACE. Thus, the enhanced TACE formulation may represent a new treatment strategy against liver cancer.


Subject(s)
Albumins , Antibiotics, Antineoplastic/administration & dosage , Carcinoma, Hepatocellular/therapy , Chemoembolization, Therapeutic/methods , Doxorubicin/administration & dosage , Liver Neoplasms/therapy , Microbubbles , Nanoparticles , Animals , Carcinoma, Hepatocellular/diagnostic imaging , Carcinoma, Hepatocellular/pathology , Disease Models, Animal , Drug Compounding , Drug Delivery Systems , Ethiodized Oil , Infusions, Intra-Arterial , Liver Neoplasms/diagnostic imaging , Liver Neoplasms/pathology , Magnetic Resonance Imaging , Male , Rabbits , Ultrasonography
2.
Circ Res ; 126(6): 767-783, 2020 03 13.
Article in English | MEDLINE | ID: mdl-32078435

ABSTRACT

RATIONALE: Central nervous system has low vascular permeability by organizing tight junction (TJ) and limiting endothelial transcytosis. While TJ has long been considered to be responsible for vascular barrier in central nervous system, suppressed transcytosis in endothelial cells is now emerging as a complementary mechanism. Whether transcytosis regulation is independent of TJ and its dysregulation dominantly causes diseases associated with edema remain elusive. Dll4 signaling is important for various vascular contexts, but its role in the maintenance of vascular barrier in central nervous system remains unknown. OBJECTIVE: To find a TJ-independent regulatory mechanism selective for transcytosis and identify its dysregulation as a cause of pathological leakage. METHODS AND RESULTS: We studied transcytosis in the adult mouse retina with low vascular permeability and employed a hypertension-induced retinal edema model for its pathological implication. Both antibody-based and genetic inactivation of Dll4 or Notch1 induce hyperpermeability by increasing transcytosis without junctional destabilization in arterial endothelial cells, leading to nonhemorrhagic leakage predominantly in the superficial retinal layer. Endothelial Sox17 deletion represses Dll4 in retinal arteries, phenocopying Dll4 blocking-driven vascular leakage. Ang II (angiotensin II)-induced hypertension represses arterial Sox17 and Dll4, followed by transcytosis-driven retinal edema, which is rescued by a gain of Notch activity. Transcriptomic profiling of retinal endothelial cells suggests that Dll4 blocking activates SREBP1 (sterol regulatory element-binding protein 1)-mediated lipogenic transcription and enriches gene sets favorable for caveolae formation. Profiling also predicts the activation of VEGF (vascular endothelial growth factor) signaling by Dll4 blockade. Inhibition of SREBP1 or VEGF-VEGFR2 (VEGF receptor 2) signaling attenuates both Dll4 blockade-driven and hypertension-induced retinal leakage. CONCLUSIONS: In the retina, Sox17-Dll4-SREBP1 signaling axis controls transcytosis independently of TJ in superficial arteries among heterogeneous regulations for the whole vessels. Uncontrolled transcytosis via dysregulated Dll4 underlies pathological leakage in hypertensive retina and could be a therapeutic target for treating hypertension-associated retinal edema.


Subject(s)
Adaptor Proteins, Signal Transducing/metabolism , Blood-Retinal Barrier/metabolism , Calcium-Binding Proteins/metabolism , Hypertensive Retinopathy/metabolism , Transcytosis , Adaptor Proteins, Signal Transducing/genetics , Animals , Arteries/metabolism , Calcium-Binding Proteins/genetics , Caveolae/metabolism , Endothelial Cells/metabolism , HMGB Proteins/metabolism , Homeostasis , Mice , Mice, Inbred C57BL , Receptor, Notch1/genetics , Receptor, Notch1/metabolism , SOXF Transcription Factors/metabolism , Signal Transduction , Sterol Regulatory Element Binding Protein 1/metabolism , Tight Junctions/metabolism , Vascular Endothelial Growth Factor A/metabolism , Vascular Endothelial Growth Factor Receptor-2/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL