Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters

Database
Language
Publication year range
1.
Am J Physiol Gastrointest Liver Physiol ; 326(2): G120-G132, 2024 02 01.
Article in English | MEDLINE | ID: mdl-38014444

ABSTRACT

Seladelpar, a selective peroxisome proliferator-activated receptor δ (PPARδ) agonist, improves markers of hepatic injury in human liver diseases, but histological improvement of nonalcoholic steatohepatitis (NASH) and liver fibrosis has been challenging with any single agent. To discover how complementary agents could work with seladelpar to achieve optimal outcomes, this study evaluated a variety of therapeutics (alone and in combination) in a mouse model of NASH. Mice on a high-fat amylin liver NASH (AMLN) diet were treated for 12 wk with seladelpar, GLP-1-R (glucagon-like peptide-1 receptor) agonist liraglutide, apoptosis signal-regulating kinase 1 (ASK1) inhibitor selonsertib, farnesoid X receptor (FXR) agonist obeticholic acid, and with seladelpar in combination with liraglutide or selonsertib. Seladelpar treatment markedly improved plasma markers of liver function. Seladelpar alone or in combination resulted in stark reductions in liver fibrosis (hydroxyproline, new collagen synthesis rate, mRNA indices of fibrosis, and fibrosis staining) compared with vehicle and the other single agents. Robust reductions in liver steatosis were also observed. Seladelpar produced a reorganization of metabolic gene expression, particularly for those genes promoting peroxisomal and mitochondrial lipid oxidation. In summary, substantial improvements in NASH and NASH-induced fibrosis were observed with seladelpar alone and in combination with liraglutide in this model. Broad gene expression analysis suggests seladelpar should be effective in concert with diverse mechanisms of action.NEW & NOTEWORTHY NASH is a chronic, progressive, and increasingly problematic liver disease that has been resistant to treatment with individual therapeutics. In this study using a diet-induced mouse model of NASH, we found that the PPARδ agonist seladelpar reduced fibrosis and NASH pathology alone and in combinations with a GLP-1-R agonist (liraglutide) or an ASK1 inhibitor (selonsertib). Liver transcriptome analysis comparing each agent and coadministration suggests seladelpar should be effective in combination with a variety of therapeutics.


Subject(s)
Acetates , Benzamides , Complementary Therapies , Imidazoles , Non-alcoholic Fatty Liver Disease , PPAR delta , Pyridines , Humans , Mice , Animals , Non-alcoholic Fatty Liver Disease/drug therapy , Non-alcoholic Fatty Liver Disease/metabolism , Liraglutide/pharmacology , Liraglutide/therapeutic use , PPAR delta/metabolism , PPAR delta/pharmacology , Liver/metabolism , Liver Cirrhosis/metabolism , Inflammation/metabolism , Mice, Inbred C57BL
2.
ACS Appl Mater Interfaces ; 12(30): 33908-33916, 2020 Jul 29.
Article in English | MEDLINE | ID: mdl-32608233

ABSTRACT

In this study, the resistive switching and synaptic properties of a complementary metal-oxide semiconductor-compatible Ti/a-BN/Si device are investigated for neuromorphic systems. A gradual change in resistance is observed in a positive SET operation in which Ti diffusion is involved in the conducting path. This operation is extremely suitable for synaptic devices in hardware-based neuromorphic systems. The isosurface charge density plots and experimental results confirm that boron vacancies can help generate a conducting path, whereas the conducting path generated by a Ti cation from interdiffusion forms is limited. A negative SET operation causes a considerable decrease in the formation energy of only boron vacancies, thereby increasing the conductivity in the low-resistance state, which may be related to RESET failure and poor endurance. The pulse transient characteristics, potentiation and depression characteristics, and good retention property of eight multilevel cells also indicate that the positive SET operation is more suitable for a synaptic device owing to the gradual modulation of conductance. Moreover, pattern recognition accuracy is examined by considering the conductance values of the measured data in the Ti/a-BN/Si device as the synaptic part of a neural network. The linear and symmetric synaptic weight update in a positive SET operation with an incremental voltage pulse scheme ensures higher pattern recognition accuracy.

3.
J Microbiol Biotechnol ; 23(10): 1478-83, 2013 Oct 28.
Article in English | MEDLINE | ID: mdl-23801253

ABSTRACT

In this study the isolation and characterization of three bacteriophages (ST4, L13, and SG3) infecting Salmonella gallinarum were carried out. They were further tested for their in vivo efficacy in phage therapy. All three phages belong to the Siphoviridae family with isometric heads and non-contractile tails. They have a broad host range among serovars of Salmonella enterica. The burst sizes were observed to be 1670, 80, and 28 for ST4, L13, and SG3, respectively. The in vivo efficacy of the phages was tested in chickens. Layer chickens were challenged with S. gallinarum, whereas contact chickens were cohabited without direct challenge. Each bacteriophage was orally inoculated in the form of feed additives. Mortality was observed and S. gallinarum was periodically re-isolated from the livers, spleens, and cecums of the chickens. Bacterial re-isolation from the organs and mortality decreased significantly in both challenged and contact chickens treated with the bacteriophages compared with untreated chickens serving as the control. The three bacteriophages may be effective alternatives to antibiotics for the control of fowl typhoid disease in chickens.


Subject(s)
Biological Therapy/methods , Poultry Diseases/microbiology , Poultry Diseases/therapy , Salmonella Infections, Animal/therapy , Salmonella Phages/growth & development , Animal Structures/microbiology , Animals , Chickens , DNA, Viral/chemistry , DNA, Viral/genetics , Host Specificity , Microscopy, Electron, Transmission , Molecular Sequence Data , Poultry Diseases/pathology , Salmonella Infections, Animal/pathology , Salmonella Phages/isolation & purification , Salmonella Phages/physiology , Salmonella Phages/ultrastructure , Salmonella enterica/virology , Sequence Analysis, DNA , Siphoviridae/growth & development , Siphoviridae/isolation & purification , Siphoviridae/physiology , Siphoviridae/ultrastructure , Survival Analysis , Virion/ultrastructure
SELECTION OF CITATIONS
SEARCH DETAIL