Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters

Therapeutic Methods and Therapies TCIM
Database
Country/Region as subject
Language
Publication year range
1.
J Microbiol ; 54(4): 290-5, 2016 Apr.
Article in English | MEDLINE | ID: mdl-27033204

ABSTRACT

Sanghuang is a medicinal mushroom that has gained particular attention in Korea. It has been extensively studied for the past few decades as a natural immune booster and cancer suppressor. Although the scientific name, Phellinus linteus, has been commonly used to refer to the sanghuang mushroom, the species identity of sanghuang has been called into question due to the ambiguity of its circumscription and the inadequacy of morphological distinctions within allied species. Because the species concept of sanghuang has been elucidated by recent molecular phylogenetic studies, it has become necessary to clarify the taxonomic positions of sanghuang strains extensively utilized in Korea. We conducted a phylogenetic analysis of 74 strains belonging to the P. linteus-baumii complex based on ITS nrDNA sequences. Parental stains of sanghuang varieties formally registered in the Korea Seed & Variety Service, including ASI 26046 (Corea sanghuang), 26114 (Boolro), and 26115 (HK 1-ho) were grouped with Sanghuangporus sanghuang instead of P. linteus in the inferred phylogeny.


Subject(s)
Basidiomycota/classification , Basidiomycota/genetics , DNA, Fungal/genetics , DNA, Intergenic/genetics , Medicine, Korean Traditional , Phylogeny , Republic of Korea
2.
Daru ; 23: 35, 2015 Jul 04.
Article in English | MEDLINE | ID: mdl-26141646

ABSTRACT

BACKGROUND: Cordyceps militaris has been used as a traditional medicine in Asian countries for a long time. Different types of Cordyceps extract were reported to have various pharmacological activities including an anti-cancer effect. We investigated the inhibitory effect of Cordyceps militaris ethanol extract on a human colorectal cancer-derived cell line, RKO. METHODS: RKO cells were treated with various concentrations of nucleosides-enriched ethanol extract of Cordyceps militaris for 48 h and cytotoxicity was measured using a CCK-8 assay. Then, xenograft Balb/c nude mice were injected with RKO cells and subsequently orally administered with ethanol extract of Cordyceps militaris every day for 3 weeks to examine the inhibitory effect on tumor growth. Lastly, the effect of Cordyceps militaris on cell cycle as well as apoptosis was measured using flow cytometry. Also, the expression of p53, caspase 9, cleaved caspase-3, cleaved PARP, Bim, Bax, Bak, and Bad were detected using western blot assay. RESULTS: RKO cells were highly susceptible to the ethanol extract of Cordyceps militaris (CME) and the growth of RKO cells-derived tumor was significantly delayed by the treatment of Cordyceps militaris. Cordyceps militaris induced cell cycle arrest in G2/M phase (untreated; 20.5 %, CME 100 µg/ml; 61.67 %, CME 300 µg/ml; 66.33 %) and increased early apoptosis (untreated; 1.01 %, CME 100 µg/ml; 8.48 %, CME 300 µg/ml; 18.07 %). The expression of p53, cleaved caspase 9, cleaved caspase-3, cleaved PARP, Bim, Bak, and Bad were upregulated by the treatment of Cordyceps militaris. CONCLUSION: Ethanol extract of Cordyceps militaris was highly cytotoxic to human colorectal carcinoma RKO cells and inhibited the growth of tumor in xenograft model. The anti-tumor effect of Cordyceps militaris was associated with an induction of cell cycle arrest and mitochondrial-mediated apoptosis.


Subject(s)
Antineoplastic Agents/therapeutic use , Complex Mixtures/therapeutic use , Cordyceps , Animals , Antineoplastic Agents/pharmacology , Apoptosis/drug effects , Apoptosis Regulatory Proteins/metabolism , Cell Cycle Checkpoints/drug effects , Cell Line, Tumor , Cell Survival/drug effects , Complex Mixtures/pharmacology , Female , Humans , Mice, Inbred BALB C , Mitochondria/drug effects , Neoplasms/drug therapy , Neoplasms/pathology , Tumor Burden/drug effects , Xenograft Model Antitumor Assays
3.
Article in English | MEDLINE | ID: mdl-25918546

ABSTRACT

The Cordyceps species have been widely used for treating various cancer diseases. Although the Cordyceps species have been widely known as an alternative anticancer remedy, which compounds are responsible for their anticancer activity is not fully understood. In this study, therefore, we examined the anticancer activity of 5 isolated compounds derived from the butanol fraction (Cb-BF) of Cordyceps bassiana. For this purpose, several cancer cell lines such as C6 glioma, MDA-MB-231, and A549 cells were employed and details of anticancer mechanism were further investigated. Of 5 compounds isolated by activity-guided fractionation from BF of Cb-EE, KTH-13, and 4-isopropyl-2,6-bis(1-phenylethyl)phenol, Cb-BF was found to be the most potent antiproliferative inhibitor of C6 glioma and MDA-MB-231 cell growth. KTH-13 treatment increased DNA laddering, upregulated the level of Annexin V positive cells, and altered morphological changes of C6 glioma and MDA-MB-231 cells. In addition, KTH-13 increased the levels of caspase 3, caspase 7, and caspase 9 cleaved forms as well as the protein level of Bax but not Bcl-2. It was also found that the phosphorylation of AKT and p85/PI3K was also clearly reduced by KTH-13 exposure. Therefore, our results suggest KTH-13 can act as a potent antiproliferative and apoptosis-inducing component from Cordyceps bassiana, contributing to the anticancer activity of this mushroom.

4.
J Microbiol ; 52(8): 696-701, 2014 Aug.
Article in English | MEDLINE | ID: mdl-25037880

ABSTRACT

The immune-modulatory as well as anti-influenza effects of Cordyceps extract were investigated using a DBA/2 mouse model. Three different concentrations of Cordyceps extract, red ginseng extract, or drinking water were orally administered to mice for seven days, and then the mice were intranasally infected with 2009 pandemic influenza H1N1 virus. Body weight changes and survival rate were measured daily post-infection. Plasma IL-12, TNF-α, and the frequency of natural killer (NK) cells were measured on day 4 post-infection. The DBA/2 strain was highly susceptible to H1N1 virus infection. We also found that Cordyceps extract had an anti-influenza effect that was associated with stable body weight and reduced mortality. The anti-viral effect of Cordyceps extract on influenza infection was mediated presumably by increased IL-12 expression and greater number of NK cells. However, high TNF-α expression after infection of H1N1 virus in mice not receiving treatment with Cordyceps extract suggested a two-sided effect of the extract on host immune regulation.


Subject(s)
Cordyceps/chemistry , Cordyceps/immunology , Immunomodulation , Influenza A Virus, H1N1 Subtype , Orthomyxoviridae Infections/immunology , Orthomyxoviridae Infections/therapy , Administration, Oral , Animals , Antiviral Agents/pharmacology , Dogs , Drinking Water , Humans , Interleukin-12/blood , Killer Cells, Natural/immunology , Madin Darby Canine Kidney Cells , Mice , Mice, Inbred DBA , Nasal Absorption , Panax , Plant Extracts/pharmacology , Tumor Necrosis Factor-alpha/blood
SELECTION OF CITATIONS
SEARCH DETAIL