Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters

Therapeutic Methods and Therapies TCIM
Database
Type of study
Language
Affiliation country
Publication year range
1.
J Biomed Sci ; 23(1): 72, 2016 Oct 21.
Article in English | MEDLINE | ID: mdl-27769241

ABSTRACT

BACKGROUND: In the central nervous system regions of the sporadic and familial FTLD and ALS patients, TDP-43 has been identified as the major component of UBIs inclusions which is abnormally hyperphosphorylated, ubiquitinated, and cleaved into C-terminal fragments to form detergent-insoluble aggregates. So far, the effective drugs for FTLD and ALS neurodegenerative diseases are yet to be developed. Autophagy has been demonstrated as the major metabolism route of the pathological TDP-43 inclusions, hence activation of autophagy is a potential therapeutic strategy for TDP-43 pathogenesis in FTLD and ALS. Berberine, a traditional herbal medicine, is an inhibitor of mTOR signal and an activator for autophagy. Berberine has been implicated in several kinds of diseases, including the neuronal-related pathogenesis, such as Parkinson's, Huntington's and Alzheimer's diseases. However, the therapeutic effect of berberine on FTLD or ALS pathology has never been investigated. RESULTS: Here we studied the molecular mechanism of berberine in cell culture model with TDP-43 proteinopathies, and found that berberine is able to reverse the processing of insoluble TDP-43 aggregates formation through deregulation of mTOR/p70S6K signal and activation of autophagic degradation pathway. And inhibition of autophagy by specific autophagosome inhibitor, 3-MA, reverses the effect of berberine on reducing the accumulation of insoluble TDP-43 and aggregates formation. These results gave us the notion that inhibition of autophagy by 3-MA reverses the effect of berberine on TDP-43 pathogenesis, and activation of mTOR-regulated autophagy plays an important role in berberine-mediated therapeutic effect on TDP-43 proteinopathies. CONCLUSION: We supported an important notion that the traditional herb berberine is a potential alternative therapy for TDP-43-related neuropathology. Here we demonstrated that berberine is able to reverse the processing of insoluble TDP-43 aggregates formation through deregulation of mTOR/p70S6K signal and activation of autophagic degradation pathway. mTOR-autophagy signals plays an important role in berberine-mediated autophagic clearance of TDP-43 aggregates. Exploring the detailed mechanism of berberine on TDP-43 proteinopathy provides a better understanding for the therapeutic development in FTLD and ALS.


Subject(s)
Amyotrophic Lateral Sclerosis/therapy , Berberine/therapeutic use , Frontotemporal Lobar Degeneration/therapy , TDP-43 Proteinopathies/therapy , Amyotrophic Lateral Sclerosis/genetics , Animals , Cell Line, Tumor , Frontotemporal Lobar Degeneration/genetics , Mice , TDP-43 Proteinopathies/genetics
2.
Biochim Biophys Acta ; 1853(10 Pt A): 2261-72, 2015 Oct.
Article in English | MEDLINE | ID: mdl-25982393

ABSTRACT

There is a wide range of drugs and combinations under investigation and/or approved over the last decade to treat colorectal cancer (CRC), but the 5-year survival rate remains poor at stages II-IV. Therefore, new, more-efficient drugs still need to be developed that will hopefully be included in first-line therapy or overcome resistance when it appears, as part of second- or third-line treatments in the near future. In this study, we revealed that heat shock protein 90 (Hsp90) inhibitors have high therapeutic potential in CRC according to combinative analysis of NCBI's Gene Expression Omnibus (GEO) repository and chemical genomic database of Connectivity Map (CMap). We found that second generation Hsp90 inhibitor, NVP-AUY922, significantly downregulated the activities of a broad spectrum of kinases involved in regulating cell growth arrest and death of NVP-AUY922-sensitive CRC cells. To overcome NVP-AUY922-induced upregulation of survivin expression which causes drug insensitivity, we found that combining berberine (BBR), a herbal medicine with potency in inhibiting survivin expression, with NVP-AUY922 resulted in synergistic antiproliferative effects for NVP-AUY922-sensitive and -insensitive CRC cells. Furthermore, we demonstrated that treatment of NVP-AUY922-insensitive CRC cells with the combination of NVP-AUY922 and BBR caused cell growth arrest through inhibiting CDK4 expression and induction of microRNA-296-5p (miR-296-5p)-mediated suppression of Pin1-ß-catenin-cyclin D1 signaling pathway. Finally, we found that the expression level of Hsp90 in tumor tissues of CRC was positively correlated with CDK4 and Pin1 expression levels. Taken together, these results indicate that combination of NVP-AUY922 and BBR therapy can inhibit multiple oncogenic signaling pathways of CRC.


Subject(s)
Antineoplastic Combined Chemotherapy Protocols/pharmacology , Colorectal Neoplasms/drug therapy , Drug Delivery Systems , HSP90 Heat-Shock Proteins/antagonists & inhibitors , Signal Transduction/drug effects , Berberine/pharmacology , Cell Line, Tumor , Colorectal Neoplasms/genetics , Colorectal Neoplasms/metabolism , Colorectal Neoplasms/pathology , Cyclin-Dependent Kinase 4/genetics , Cyclin-Dependent Kinase 4/metabolism , Gene Expression Regulation, Neoplastic/drug effects , Gene Expression Regulation, Neoplastic/genetics , HSP90 Heat-Shock Proteins/genetics , HSP90 Heat-Shock Proteins/metabolism , Humans , Isoxazoles/pharmacology , MicroRNAs/biosynthesis , MicroRNAs/genetics , Neoplasm Proteins/genetics , Neoplasm Proteins/metabolism , RNA, Neoplasm/biosynthesis , RNA, Neoplasm/genetics , Resorcinols/pharmacology , Signal Transduction/genetics
3.
Oncotarget ; 6(10): 7788-803, 2015 Apr 10.
Article in English | MEDLINE | ID: mdl-25762623

ABSTRACT

PGC-1α, a major metabolic regulator of gluconeogenesis and lipogenesis, is strongly induced to coactivate Hepatitis B virus (HBV) gene expression in the liver of fasting mice. We found that 8-Br-cAMP and glucocorticoids synergistically induce PGC-1α and its downstream targets, including PEPCK and G6Pase. Also, HBV core promoter activity was synergistically enhanced by 8-Br-cAMP and glucocorticoids. Graptopetalum paraguayense (GP), a herbal medicine, is commonly used in Taiwan to treat liver disorders. Partially purified fraction of GP (named HH-F3) suppressed 8-Br-cAMP/glucocorticoid-induced G6Pase, PEPCK and PGC-1α expression and suppressed HBV core promoter activity. HH-F3 blocked HBV core promoter activity via inhibition of PGC-1α expression. Ectopically expressed PGC-1α rescued HH-F3-inhibited HBV surface antigen expression, HBV mRNA production, core protein levels, and HBV replication. HH-F3 also inhibited fatty acid synthase (FASN) expression and decreased lipid accumulation by down-regulating PGC-1α. Thus, HH-F3 can inhibit HBV replication, gluconeogenesis and lipogenesis by down-regulating PGC-1α. Our study indicates that targeting PGC-1α may be a therapeutic strategy for treatment of HBV infections. HH-F3 may have potential use for the treatment of chronic hepatitis B patients with associated metabolic syndrome.


Subject(s)
Carcinoma, Hepatocellular/metabolism , Carcinoma, Hepatocellular/virology , DNA Replication/physiology , Hepatitis B virus/physiology , Liver Neoplasms/metabolism , Liver Neoplasms/virology , Transcription Factors/metabolism , 8-Bromo Cyclic Adenosine Monophosphate/pharmacology , Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/pathology , Cell Line, Tumor , Crassulaceae/chemistry , DNA, Viral/genetics , DNA, Viral/metabolism , Dexamethasone/pharmacology , Gene Expression Regulation, Neoplastic , Gluconeogenesis , Hep G2 Cells , Hepatitis B Surface Antigens/biosynthesis , Hepatitis B Surface Antigens/genetics , Hepatitis B virus/genetics , Hepatitis B virus/metabolism , Humans , Lipogenesis , Liver Neoplasms/genetics , Liver Neoplasms/pathology , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha , Plant Extracts/pharmacology , Signal Transduction , Transcription Factors/biosynthesis , Transcription Factors/genetics
4.
Sci Rep ; 4: 6394, 2014 Sep 17.
Article in English | MEDLINE | ID: mdl-25227736

ABSTRACT

Berberine (BBR), a traditional Chinese herbal medicine, was shown to display anticancer activity. In this study, we attempted to provide a global view of the molecular pathways associated with its anticancer effect through a gene expression-based chemical approach. BBR-induced differentially expressed genes obtained from the Gene Expression Omnibus (GEO) at the National Center for Biotechnology Information (NCBI) were analyzed using the Connectivity Map (CMAP) database to compare similarities of gene expression profiles between BBR and CMAP compounds. Candidate compounds were further analyzed using the Search Tool for Interactions of Chemicals (STITCH) database to explore chemical-protein interactions. Results showed that BBR may inhibit protein synthesis, histone deacetylase (HDAC), or AKT/mammalian target of rapamycin (mTOR) pathways. Further analyses demonstrated that BBR inhibited global protein synthesis and basal AKT activity, and induced endoplasmic reticulum (ER) stress and autophagy, which was associated with activation of AMP-activated protein kinase (AMPK). However, BBR did not alter mTOR or HDAC activities. Interestingly, BBR induced the acetylation of α-tubulin, a substrate of HDAC6. In addition, the combination of BBR and SAHA, a pan-HDAC inhibitor, synergistically inhibited cell proliferation and induced cell cycle arrest. Our results provide novel insights into the mechanisms of action of BBR in cancer therapy.


Subject(s)
Berberine/pharmacology , Biomarkers, Tumor/genetics , Breast Neoplasms/genetics , Gene Expression Profiling , Gene Expression Regulation, Neoplastic/drug effects , AMP-Activated Protein Kinases/genetics , AMP-Activated Protein Kinases/metabolism , Apoptosis/drug effects , Biomarkers, Tumor/metabolism , Blotting, Western , Breast Neoplasms/drug therapy , Breast Neoplasms/metabolism , Cell Cycle/drug effects , Cell Movement/drug effects , Cell Proliferation/drug effects , Drugs, Chinese Herbal , Female , Flow Cytometry , Histone Deacetylases/genetics , Histone Deacetylases/metabolism , Humans , Oligonucleotide Array Sequence Analysis , RNA, Messenger/genetics , Real-Time Polymerase Chain Reaction , Reverse Transcriptase Polymerase Chain Reaction , Tubulin/genetics , Tubulin/metabolism , Tumor Cells, Cultured
SELECTION OF CITATIONS
SEARCH DETAIL