Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 146
Filter
1.
Nutrients ; 15(3)2023 Jan 25.
Article in English | MEDLINE | ID: mdl-36771320

ABSTRACT

Obesity is a major cause of conditions such as type 2 diabetes and non-alcoholic fatty liver disease, posing a threat to public health worldwide. Here, we analyzed the anti-obesity effects of a standardized ethanol extract of Cassia mimosoides var. nomame Makino (EECM) in vitro and in vivo. Treatment of 3T3-L1 adipocytes with EECM suppressed adipogenesis and lipogenesis via the AMP-activated protein kinase pathway by downregulating the expression levels of CCAAT/enhancer-binding protein-alpha, peroxisome proliferator-activated receptor (PPAR)-γ, sterol regulatory element-binding protein-1, and fatty acid synthase and upregulating the acetyl-CoA carboxylase. EECM inhibited mitotic clonal expansion during early adipocyte differentiation. Oral administration of EECM for 10 weeks significantly alleviated body weight gain and body fat accumulation in high-fat diet (HFD)-fed mice. EECM mitigated adipogenesis and lipid accumulation in white adipose and liver tissues of HFD-induced obese mice. It regulated the levels of adipogenic hormones including insulin, leptin, and adipokine in the blood plasma. In brown adipose tissue, EECM induced the expression of thermogenic factors such as uncoupling protein-1, PPAR-α, PPARγ co-activator-1α, sirtuin 1, and cytochrome c oxidase IV. EECM restored the gut microbiome composition at the phylum level and alleviated dysbiosis. Therefore, EECM may be used as a promising therapeutic agent for the prevention of obesity.


Subject(s)
Anti-Obesity Agents , Cassia , Diabetes Mellitus, Type 2 , Plant Extracts , Animals , Mice , 3T3-L1 Cells , Adipogenesis , Anti-Obesity Agents/pharmacology , Cassia/chemistry , Diabetes Mellitus, Type 2/complications , Diet, High-Fat/adverse effects , Lipogenesis , Mice, Inbred C57BL , Mice, Obese , Obesity/metabolism , Peroxisome Proliferator-Activated Receptors/metabolism , PPAR gamma/metabolism , Plant Extracts/pharmacology
2.
Phytomedicine ; 109: 154553, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36610153

ABSTRACT

BACKGROUND: We previously reported the potential inhibitory activity of 3',4'-dihydroxyflavone (DHF) on nitric oxide (NO) and prostaglandin E2 (PGE2) production in lipopolysaccharide (LPS)-stimulated macrophages. PURPOSE: We investigated the underlying molecular mechanisms of DHF in LPS-activated macrophages and evaluated its effect on LPS-induced septic shock in mice. METHODS: To explore the anti-inflammatory effect of DHF, nitrite, PGE2, and cytokines were measured in vitro and in vivo experiments. In addition, to verify the molecular signaling pathway, quantitative real time-PCR, luciferase assay, nuclear extraction, electrophoretic mobility shift assay, immunocytochemistry, immunoprecipitation, molecular docking analysis, and myeloid differentiation 2 (MD2)-LPS binding assay were conducted. RESULTS: DHF suppressed the LPS-induced expression of proinflammatory mediators through nuclear factor-κB (NF-κB), activator protein-1 (AP-1), and interferon regulatory factor 3 (IRF3) inactivation pathways in RAW 264.7 macrophages. Importantly, molecular docking analysis and in vitro binding assays showed that DHF interacts with the hydrophobic pocket of MD2 and then interferes with the interaction between LPS and toll-like receptor 4 (TLR4). DHF inhibited LPS-induced oxidative stress by upregulating nuclear factor erythroid 2-related factor 2 (Nrf2). Treatment of LPS-induced endotoxemia mice with DHF reduced the expression levels of pro-inflammatory mediators via the inactivation of NF-κB, AP-1, and signal transducer and activator of transcription 1 (STAT1) in the lung tissue, thus increasing the survival rate. CONCLUSION: Taken together, our data first time revealed the underlying mechanism of the DHF-dependent anti-inflammatory effect by preventing LPS from binding to the TLR4/MD2 complex. Therefore, DHF may be a possible anti-inflammatory agent for the treatment of LPS-mediated inflammatory diseases.


Subject(s)
Lipopolysaccharides , NF-kappa B , Animals , Mice , Lipopolysaccharides/pharmacology , NF-kappa B/metabolism , Toll-Like Receptor 4/metabolism , Transcription Factor AP-1/metabolism , Molecular Docking Simulation , Anti-Inflammatory Agents/pharmacology
3.
Nutrients ; 14(3)2022 Feb 07.
Article in English | MEDLINE | ID: mdl-35277054

ABSTRACT

The hepatic adiponectin and farnesoid X receptor (FXR) signaling pathways play multiple roles in modulating lipid and glucose metabolism, reducing hepatic inflammation and fibrosis, and altering various metabolic targets for the management of non-alcoholic fatty liver disease (NAFLD). Alisma orientale (AO, Ze xie in Chinese and Taeksa in Korean) is an herbal plant whose tubers are enriched with triterpenoids, which have been reported to exhibit various bioactive properties associated with NAFLD. Here, the present study provides a preclinical evaluation of the biological functions and related signaling pathways of AO extract for the treatment of NAFLD in a Western diet (WD)-induced mouse model. The findings showed that AO extract significantly reversed serum markers (liver function, lipid profile, and glucose) and improved histological features in the liver sections of mice fed WD for 52 weeks. In addition, it also reduced hepatic expression of fibrogenic markers in liver tissue and decreased the extent of collagen-positive areas, as well as inhibited F4/80 macrophage aggregation and inflammatory cytokine secretion. The activation of adiponectin and FXR expression in hepatic tissue may be a major mechanistic signaling cascade supporting the promising role of AO in NAFLD pharmacotherapy. Collectively, our results demonstrated that AO extract improves non-alcoholic steatohepatitis (NASH) resolution, particularly with respect to NASH-related fibrosis, along with the regulation of liver enzymes, postprandial hyperglycemia, hyperlipidemia, and weight loss, probably through the modulation of the hepatic adiponectin and FXR pathways.


Subject(s)
Alisma , Diet, Western , Non-alcoholic Fatty Liver Disease , Adiponectin/metabolism , Alisma/chemistry , Animals , Diet, Western/adverse effects , Fibrosis , Mice , Mice, Inbred C57BL , Non-alcoholic Fatty Liver Disease/chemically induced , Non-alcoholic Fatty Liver Disease/etiology , Plant Extracts/therapeutic use
4.
Nutrients ; 14(1)2022 Jan 03.
Article in English | MEDLINE | ID: mdl-35011083

ABSTRACT

Obesity is a major health problem that is caused by body fat accumulation and that can lead to metabolic diseases. Owing to several side effects of the currently used antiobesity drugs, natural plants have risen as safe and potential candidates to alleviate obesity. We have previously reported the antiobesity effect of Hydrangea serrata (Thunb.) Ser. leaves extract (WHS) and its underlying mechanisms. As an extension of our preclinical studies, this study aimed to investigate the effect of WHS on body weight and body fat reduction in overweight or obese humans. A total of 93 healthy overweight or obese males and females, aged 19-65 years, with body mass indexes (BMIs) ≥ 25 and <32 kg/m2, were recruited and received either an oral administration of 600 mg of WHS, or placebo tablets for 12 weeks. Daily supplementation with WHS decreased body weights, body fat masses, and BMIs compared with the placebo-treated group. The hip circumferences, visceral fat areas, abdominal fat areas, and visceral-to-subcutaneous ratios decreased after WHS supplementation. No significant side effects were observed during or after the 12 weeks of WHS intake. In conclusion, WHS, which has beneficial effects on body weight and body fat reduction, could be a promising antiobesity supplement that does not produce any side effects.


Subject(s)
Adipose Tissue/drug effects , Body Weight/drug effects , Hydrangea/chemistry , Overweight/drug therapy , Plant Extracts/administration & dosage , Plant Leaves/chemistry , Abdominal Fat/drug effects , Adult , Aged , Anti-Obesity Agents , Body Composition/drug effects , Body Mass Index , Double-Blind Method , Humans , Intra-Abdominal Fat/drug effects , Male , Middle Aged , Obesity/drug therapy , Obesity/physiopathology , Overweight/physiopathology , Placebos
5.
Mar Drugs ; 19(12)2021 Dec 03.
Article in English | MEDLINE | ID: mdl-34940692

ABSTRACT

Chronic exposure to ultraviolet B (UVB) is a major cause of skin aging. The aim of the present study was to determine the photoprotective effect of a 30% ethanol extract of Eisenia bicyclis (Kjellman) Setchell (EEB) against UVB-induced skin aging. By treating human dermal fibroblasts (Hs68) with EEB after UVB irradiation, we found that EEB had a cytoprotective effect. EEB treatment significantly decreased UVB-induced matrix metalloproteinase-1 (MMP-1) production by suppressing the activation of mitogen-activated protein kinase (MAPK)/activator protein 1 (AP-1) signaling and enhancing the protein expression of tissue inhibitors of metalloproteinases (TIMPs). EEB was also found to recover the UVB-induced degradation of pro-collagen by upregulating Smad signaling. Moreover, EEB increased the mRNA expression of filaggrin, involucrin, and loricrin in UVB-irradiated human epidermal keratinocytes (HaCaT). EEB decreased UVB-induced reactive oxygen species (ROS) generation by upregulating glutathione peroxidase 1 (GPx1) and heme oxygenase-1 (HO-1) expression via nuclear factor erythroid-2-related factor 2 (Nrf2) activation in Hs68 cells. In a UVB-induced HR-1 hairless mouse model, the oral administration of EEB mitigated photoaging lesions including wrinkle formation, skin thickness, and skin dryness by downregulating MMP-1 production and upregulating the expression of pro-collagen type I alpha 1 chain (pro-COL1A1). Collectively, our findings revealed that EEB prevents UVB-induced skin damage by regulating MMP-1 and pro-collagen type I production through MAPK/AP-1 and Smad pathways.


Subject(s)
Antioxidants/pharmacology , Phaeophyceae , Plant Extracts/pharmacology , Skin Aging/drug effects , Animals , Aquatic Organisms , Disease Models, Animal , Fibroblasts , Humans , Male , Mice , Mice, Hairless , Ultraviolet Rays
6.
Molecules ; 26(22)2021 Nov 19.
Article in English | MEDLINE | ID: mdl-34834083

ABSTRACT

A sensitive and reproducible liquid chromatography-tandem mass spectrometry (LC-MS/MS) system was developed and fully validated for the simultaneous determination of ephedrine and pseudoephedrine in human plasma after oral administration of the herbal prescription Ojeok-san (OJS); 2-phenylethylamine was used as the internal standard (IS). Both compounds presented a linear calibration curve (r2 ≥ 0.99) over a concentration range of 0.2-50 ng/mL. The developed method was fully validated in terms of selectivity, lower limit of quantitation, precision, accuracy, recovery, matrix effect, and stability, according to the regulatory guidelines from the U.S. Food and Drug Administration and the Korea Ministry of Food and Drug Safety. This validated method was successfully applied for the pharmacokinetic assessment of ephedrine and pseudoephedrine in 20 healthy Korean volunteers administered OJS.


Subject(s)
Ephedrine , Plant Extracts/administration & dosage , Pseudoephedrine , Tandem Mass Spectrometry , Administration, Oral , Chromatography, Liquid , Ephedrine/administration & dosage , Ephedrine/pharmacokinetics , Female , Humans , Male , Pseudoephedrine/administration & dosage , Pseudoephedrine/pharmacokinetics , Republic of Korea
7.
Nutrients ; 13(10)2021 Oct 16.
Article in English | MEDLINE | ID: mdl-34684625

ABSTRACT

We previously reported the potential anti-obesity effects of the water extract of Hydrangea serrata (Thunb.) Ser. leaves (WHS) in high-fat diet-induced obese mice. As an extension of our previous study, we investigated the anti-adipogenic and anti-obesity effects of WHS and its underlying molecular mechanisms in 3T3-L1 preadipocytes and genetically obese db/db mice. WHS attenuated the gene expression of adipogenic transcription factors, CCAAT/enhancer binding protein (C/EBP)α, peroxisome proliferator-activated receptor (PPAR)γ, and sterol regulatory element binding protein (SREBP)-1. Moreover, WHS inhibited the mitotic clonal expansion of preadipocytes by inducing G1 cell cycle arrest. Oral administration of WHS alleviated body weight gain and body fat accumulation in vivo. In addition, adipocyte hypertrophy and liver steatosis were ameliorated by WHS treatment. WHS reduced C/EBPα, PPARγ, and SREBP-1 expression and activated AMPKα phosphorylation in both white adipose tissue (WAT) and liver tissue. WHS also mildly upregulated the expression of thermogenic proteins, including uncoupling protein-1, PPARs, PPARγ coactivator-1α, and sirtuin-1, in brown adipose tissue (BAT). Furthermore, WHS altered the gut microbiota composition to resemble that of wild-type mice. Taken together, our findings suggest that WHS could alleviate adiposity by inhibiting adipogenesis in WAT and the liver and modulating the gut microbiota.


Subject(s)
Anti-Obesity Agents/pharmacology , Hydrangea/chemistry , Obesity/drug therapy , Plant Extracts/pharmacology , 3T3-L1 Cells , Adipocytes/drug effects , Adipogenesis/drug effects , Adipose Tissue, Brown/metabolism , Adipose Tissue, White/metabolism , Adiposity/drug effects , Animals , CCAAT-Enhancer-Binding Protein-alpha/genetics , CCAAT-Enhancer-Binding Protein-alpha/metabolism , Diet, High-Fat/adverse effects , Gastrointestinal Microbiome/drug effects , Male , Mice , Mice, Inbred C57BL , Mice, Obese , Obesity/genetics , Obesity/metabolism , PPAR gamma/genetics , PPAR gamma/metabolism , Sterol Regulatory Element Binding Protein 1/genetics , Sterol Regulatory Element Binding Protein 1/metabolism , Thermogenesis/drug effects , Weight Gain/drug effects
8.
J Med Chem ; 64(21): 15912-15935, 2021 11 11.
Article in English | MEDLINE | ID: mdl-34662122

ABSTRACT

Due to the increased morbidity and mortality by fungal infections and the emergence of severe antifungal resistance, there is an urgent need for new antifungal agents. Here, we screened for antifungal activity in our in-house library through the minimum inhibitory concentration test and derived two hit compounds with moderate antifungal activities. The hit compounds' antifungal activities and drug-like properties were optimized by substituting various aryl ring, alkyl chain, and methyl groups. Among the optimized compounds, 22h was the most promising candidate with good drug-like properties and exhibited potent fast-acting fungicidal antifungal effects against various fungal pathogens and synergistic antifungal activities with some known antifungal drugs. Additionally, 22h was further confirmed to disturb fungal cell wall integrity by activating multiple cell wall integrity pathways. Furthermore, 22h exerted significant antifungal efficacy in both the subcutaneous infection mouse model and ex vivo human nail infection model.


Subject(s)
Antifungal Agents/therapeutic use , Fungi/drug effects , Mycoses/drug therapy , Animals , Antifungal Agents/pharmacokinetics , Antifungal Agents/pharmacology , Antifungal Agents/toxicity , Cell Wall/drug effects , Drug Evaluation, Preclinical , Drug Synergism , Female , Humans , Male , Mice , Microbial Sensitivity Tests , Mycoses/microbiology , Rats, Sprague-Dawley
9.
J Med Chem ; 64(10): 6877-6901, 2021 05 27.
Article in English | MEDLINE | ID: mdl-33999621

ABSTRACT

BRAF is an important component of MAPK cascade. Mutation of BRAF, in particular V600E, leads to hyperactivation of the MAPK pathway and uncontrolled cellular growth. Resistance to selective inhibitors of mutated BRAF is a major obstacle against treatment of many cancer types. In this work, a series of new (imidazo[2,1-b]thiazol-5-yl)pyrimidine derivatives possessing a terminal sulfonamide moiety were synthesized. Pan-RAF inhibitory effect of the new series was investigated, and structure-activity relationship is discussed. Antiproliferative activity of the target compounds was tested against the NCI-60 cell line panel. The most active compounds were further tested to obtain their IC50 values against cancer cells. Compound 27c with terminal open chain sulfonamide and 38a with a cyclic sulfamide moiety showed the highest activity in enzymatic and cellular assay, and both compounds were able to inhibit phosphorylation of MEK and ERK. Compound 38a was selected for testing its in vivo activity against melanoma. Cellular and animal activities are reported.


Subject(s)
Imidazoles/chemistry , Protein Kinase Inhibitors/chemistry , Proto-Oncogene Proteins B-raf/antagonists & inhibitors , Thiazoles/chemistry , Animals , Binding Sites , Cell Line, Tumor , Cell Proliferation/drug effects , Drug Evaluation, Preclinical , Drug Screening Assays, Antitumor , Drug Stability , Half-Life , Humans , Imidazoles/metabolism , Melanoma/drug therapy , Melanoma/pathology , Mice , Mitogen-Activated Protein Kinase Kinases/metabolism , Molecular Docking Simulation , Phosphorylation/drug effects , Protein Kinase Inhibitors/metabolism , Protein Kinase Inhibitors/therapeutic use , Proto-Oncogene Proteins B-raf/metabolism , Structure-Activity Relationship , Sulfonamides/chemistry , Thiazoles/metabolism , Transplantation, Heterologous
10.
Food Funct ; 12(6): 2672-2685, 2021 Mar 21.
Article in English | MEDLINE | ID: mdl-33656018

ABSTRACT

Obesity is an increasing health problem worldwide as it is the major risk factor for metabolic diseases. In the present study, we investigated the anti-obesity effects of WHS by examining its effects on high fat diet (HFD)-induced obese mice. Male C57BL/6 mice were fed either a normal diet (ND) or a high fat diet (HFD) with or without WHS. At the end of the experiment, we observed the changes in their body weight and white adipose tissue (WAT) weight and lipid profiles in plasma. We performed western blot and histological analyses of WAT and liver to elucidate the molecular mechanisms of action. We also conducted fecal 16S rRNA analysis for investigating the gut microbiota. Our results indicated that pre- and post-oral administration of WHS significantly prevented body weight gain and reduced body fat weight in HFD-induced obese mice. In addition, WHS was found to improve adipocyte hypertrophy and liver fat accumulation by regulating the AMPK and AKT/mTOR pathways. WHS ameliorated hyperlipidemia by reducing total cholesterol and low-density lipoprotein (LDL) and decreased the energy metabolism-related hormones, leptin and insulin, in mouse plasma. Furthermore, we found that WHS modulated gut dysbiosis by normalizing HFD-induced changes. Taken together, our in vivo data implicate that WHS can be considered as a potential dietary supplement for alleviating obesity.


Subject(s)
AMP-Activated Protein Kinases/metabolism , Gastrointestinal Microbiome/drug effects , Hydrangea/chemistry , Obesity/metabolism , Plant Extracts/pharmacology , Animals , Body Weight/drug effects , Diet, High-Fat , Lipids/blood , Mice , Mice, Obese , Plant Leaves/chemistry , Signal Transduction/drug effects
11.
Nutrients ; 12(6)2020 May 28.
Article in English | MEDLINE | ID: mdl-32481760

ABSTRACT

Previously, we reported that the hot water extract of Hydrangea serrata leaves (WHS) and its active component, hydrangenol, possess in vitro and in vivo effects on skin wrinkles and moisturization. We conducted a randomized, double-blind, placebo-controlled trial to clinically evaluate the effect of WHS on human skin. Participants (n = 151) were randomly assigned to receive either WHS 300 mg, WHS 600 mg, or placebo, once daily for 12 weeks. Skin wrinkle, hydration, elasticity, texture, and roughness parameters were assessed at baseline and after 4, 8, and 12 weeks. Compared to the placebo, skin wrinkles were significantly reduced in both WHS groups after 8 and 12 weeks. In both WHS groups, five parameters (R1-R5) of skin wrinkles significantly improved and skin hydration was significantly enhanced when compared to the placebo group after 12 weeks. Compared with the placebo, three parameters of skin elasticity, including overall elasticity (R2), net elasticity (R5), and ratio of elastic recovery to total deformation (R7), improved after 12 weeks of oral WHS (600 mg) administration. Changes in skin texture and roughness were significantly reduced in both WHS groups. No WHS-related adverse reactions were reported. Hence, WHS could be used as a health supplement for skin anti-aging.


Subject(s)
Cutis Laxa/drug therapy , Dietary Supplements , Elasticity/drug effects , Hydrangea/chemistry , Organism Hydration Status/drug effects , Phytotherapy , Plant Extracts/pharmacology , Plant Extracts/therapeutic use , Plant Leaves/chemistry , Skin Aging/drug effects , Skin/drug effects , Administration, Oral , Adult , Cutis Laxa/prevention & control , Double-Blind Method , Female , Humans , Male , Middle Aged , Plant Extracts/administration & dosage , Plant Extracts/isolation & purification
12.
Nutrients ; 12(2)2020 Feb 12.
Article in English | MEDLINE | ID: mdl-32059355

ABSTRACT

Inflammatory bowel disease (IBD) is a major risk factor of colorectal cancer. Drugs currently used for IBD exhibit adverse effects including vomiting, nausea, and diarrhea. Naturally derived novel alternative therapies are required to overcome these limitations. In this study, we investigated the protective effects of ethanol extract of Cicer arietinum (CEE) in a dextran sodium sulfate (DSS)-induced mouse model of colitis. CEE markedly improved DSS-induced clinical symptoms and histological status, such as the disease activity index, spleen weight, and colon length. Moreover, CEE-treated mice showed significant recovery of DSS-induced crypt damage and cell death. CEE suppressed myeloperoxidase (MPO) activity and macrophage marker F4/80 mRNA expression in colonic tissue of mice with DSS-induced colitis, indicating neutrophil infiltration and macrophage accumulation, respectively. Although DSS upregulated pro-inflammatory mediators and activated transcription factors, CEE downregulated the mRNA expression of cytokines including interleukin-6, interleukin-1ß, and tumor necrosis factor-α, protein expression of cyclooxygenase-2 and inducible nitric oxide synthase, as well as activation of nuclear factor-kappa B (NF-кB) and signal transducer and activator of transcription 3 (STAT3). Hence, our findings reveal that the anti-inflammatory properties of CEE, involving the downregulation of the expression of pro-inflammatory mediators by inactivating NF-кB and STAT3 in DSS-induced colitis mice.


Subject(s)
Anti-Inflammatory Agents , Cicer/chemistry , Colitis, Ulcerative/drug therapy , Colitis, Ulcerative/genetics , Dextran Sulfate/adverse effects , Ethanol , Phytotherapy , Plant Extracts/pharmacology , Plant Extracts/therapeutic use , Animals , Colitis, Ulcerative/etiology , Cytokines/genetics , Cytokines/metabolism , Disease Models, Animal , Gene Expression , Inflammation Mediators/metabolism , Male , Mice, Inbred ICR , NF-kappa B/genetics , NF-kappa B/metabolism , Plant Extracts/isolation & purification , RNA, Messenger/genetics , RNA, Messenger/metabolism , STAT3 Transcription Factor/genetics , STAT3 Transcription Factor/metabolism
13.
Phytomedicine ; 68: 153167, 2020 Mar.
Article in English | MEDLINE | ID: mdl-32028186

ABSTRACT

BACKGROUND: The roots of Partrinia scabra have been used as a medicinal herb in Asia. We previously reported that the inhibitory effect of patriscabrin F on lipopolysaccharide (LPS)-induced nitric oxide (NO) production was the most potent than that of other isolated iridoids from the roots of P. scabra. PURPOSE: We investigated the anti-inflammatory activity of patriscabrin F as an active compound of P. scabra and related signaling cascade in LPS-activated macrophages. METHOD: The anti-inflammatory activities of patriscabrin F were determined according to its inhibitory effects on NO, prostaglandin E2 (PGE2), and pro-inflammatory cytokines. The molecular mechanisms were revealed by analyzing nuclear factor-κB (NF-κB), activator protein-1 (AP-1), interferon regulatory factor 3 (IRF3), and Janus kinase (JAK)/signal transducer and activator of transcription (STAT) pathway. RESULTS: Patriscabrin F inhibited the LPS-induced production of NO, PGE2, tumor necrosis factor-α (TNF-α), interleukin (IL)-1ß, and IL-6 in both bone-marrow derived macrophages (BMDMs) and RAW 264.7 macrophages. Patriscabrin F downregulated LPS-induced inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2), TNF-α, IL-1ß, and IL-6 at the transcriptional level. Patriscabrin F suppressed LPS-induced NF-κB activation by decreasing p65 nuclear translocation, inhibitory κBα (IκBα) phosphorylation, and IκB kinase (IKK)α/ß phosphorylation. Patriscabrin F attenuated LPS-induced AP-1 activity by inhibiting c-Fos phosphorylation. Patriscabrin F suppressed the LPS-induced phosphorylation of IRF3, JAK1/JAK2, and STAT1/STAT3. CONCLUSION: Taken together, our findings suggest patriscabrin F may exhibit anti-inflammatory properties via the inhibition of NF-κB, AP-1, IRF3, and JAK-STAT activation in LPS-induced macrophages.


Subject(s)
Inflammation/drug therapy , Inflammation/metabolism , Iridoids/pharmacology , Macrophages/drug effects , Patrinia/chemistry , Animals , Cyclooxygenase 2/metabolism , Down-Regulation/drug effects , Inflammation/pathology , Interferon Regulatory Factor-3/metabolism , Iridoids/therapeutic use , Lipopolysaccharides/toxicity , Macrophages/metabolism , Mice , Mice, Inbred C57BL , NF-kappa B/metabolism , Nitric Oxide/metabolism , Nitric Oxide Synthase Type II/metabolism , Plant Roots/chemistry , RAW 264.7 Cells , STAT1 Transcription Factor/metabolism , STAT3 Transcription Factor/metabolism , Transcription Factor AP-1/metabolism
14.
Molecules ; 25(1)2020 Jan 03.
Article in English | MEDLINE | ID: mdl-31947862

ABSTRACT

The seeds of Millettia ferruginea are used in fishing, pesticides, and folk medicine in Ethiopia. Here, the anti-cancer effects of isoflavones isolated from M. ferruginea were evaluated in human ovarian cancer cells. We found that isoflavone ferrugone and 6,7-dimethoxy-3',4'-methylenedioxy-8-(3,3-dimethylallyl)isoflavone (DMI) had potent cytotoxic effects on human ovarian cancer cell A2780 and SKOV3. Ferrugone and DMI treatment increased the sub-G1 cell population in a dose-dependent manner in A2780 cells. The cytotoxic activity of ferrugone and DMI was associated with the induction of apoptosis, as shown by an increase in annexin V-positive cells. Z-VAD-fmk, a broad-spectrum caspase inhibitor, and z-DEVD-fmk, a caspase-3 inhibitor, significantly reversed both the ferrugone and DMI-induced apoptosis, suggesting that cell death stimulated by the isoflavones is mediated by caspase-3-dependent apoptosis. Additionally, ferrugone-induced apoptosis was found to be caspase-8-dependent, while DMI-induced apoptosis was caspase-9-dependent. Notably, DMI, but not ferrugone, increased the intracellular levels of reactive oxygen species (ROS), and antioxidant N-acetyl-L-cysteine (NAC) attenuated the pro-apoptotic activity of DMI. These data suggest that DMI induced apoptotic cell death through the intrinsic pathway via ROS production, while ferrugone stimulated the extrinsic pathway in human ovarian cancer cells.


Subject(s)
Antineoplastic Agents, Phytogenic , Apoptosis/drug effects , Isoflavones , Millettia/chemistry , Ovarian Neoplasms/drug therapy , Seeds/chemistry , Antineoplastic Agents, Phytogenic/chemistry , Antineoplastic Agents, Phytogenic/isolation & purification , Antineoplastic Agents, Phytogenic/pharmacology , Cell Line , Female , Humans , Isoflavones/chemistry , Isoflavones/isolation & purification , Isoflavones/pharmacology , Ovarian Neoplasms/metabolism , Ovarian Neoplasms/pathology
15.
J Nat Prod ; 82(12): 3379-3385, 2019 12 27.
Article in English | MEDLINE | ID: mdl-31747281

ABSTRACT

A new flavone glucoside, acacetin-7-O-(3″-O-acetyl-6″-O-malonyl)-ß-d-glucopyranoside (1), two new phenolic glucosides, (3R,7R)-tuberonic acid-12-O-[6'-O-(E)-feruloyl]-ß-d-glucopyranoside (14) and salicylic acid-2-O-[6'-O-(E)-feruloyl]-ß-d-glucopyranoside (15), and two new phenylpropanoid glucosides, chavicol-1-O-(6'-O-methylmalonyl)-ß-d-glucopyranoside (17) and chavicol-1-O-(6'-O-acetyl)-ß-d-glucopyranoside(18), as well as 26 known compounds, 2-13, 16, and 19-31, were isolated from the aerial parts of Agastache rugose. The structures of the new compounds were established by spectroscopic/spectrometric methods such as HRESIMS, NMR, and ECD. The anti-inflammatory effect of the isolated compounds was evaluated by measuring their inhibitory activities on prostaglandin E2 (PGE2) in lipopolysaccharide (LPS)-treated RAW 264.7 macrophages. New compounds 1, 15, 17, and 18 inhibited LPS-induced PGE2 production with IC50 values of 16.8 ± 0.8, 33.9 ± 4.8, 14.3 ± 2.1, and 48.8 ± 4.4 µM, respectively. Compounds 5, 7, 9-11, 13, 19, 20, 22, and 27-30 showed potent inhibitory activities with IC50 values of 1.7-8.4 µM.


Subject(s)
Agastache/chemistry , Dinoprostone/biosynthesis , Lipopolysaccharides/pharmacology , Macrophages/drug effects , Plant Components, Aerial/chemistry , Plant Extracts/pharmacology , Animals , Mice , Molecular Structure , RAW 264.7 Cells , Spectrum Analysis/methods
16.
Nutrients ; 11(10)2019 Oct 02.
Article in English | MEDLINE | ID: mdl-31581754

ABSTRACT

Our previous study showed that hydrangenol isolated from Hydrangea serrata leaves exerts antiphotoaging activity in vitro. In this study, we determined its antiphotoaging effect in UVB-irradiated HR-1 hairless mice. We evaluated wrinkle formation, skin thickness, histological characteristics, and mRNA and protein expression using qRT-PCR and Western blot analysis in dorsal skins. Hydrangenol mitigated wrinkle formation, dorsal thickness, dehydration, and collagen degradation. Hydrangenol increased the expression of involucrin, filaggrin, and aquaporin-3 (AQP3) as well as hyaluronic acid (HA) production via hyaluronidase (HYAL)-1/-2 downregulation. Consistent with the recovery of collagen composition, the expression of Pro-COL1A1 was increased by hydrangenol. Matrix metalloproteinase (MMP)-1/-3, cyclooxygenase-2 (COX-2), and interleukin-6 (IL-6) expression was reduced by hydrangenol. Hydrangenol attenuated the phosphorylation of mitogen-activated protein kinases (MAPKs) including ERK and p38, activator protein 1 (AP-1) subunit, and signal transduction and activation of transcription 1 (STAT1). Hydrangenol upregulated the expression of nuclear factor-E2-related factor 2 (Nrf2), heme oxygenase-1 (HO-1), NAD(P)H quinone dehydrogenase 1 (NQO-1), glutamate cysteine ligase modifier subunit (GCLM), and glutamate cysteine ligase catalysis subunit (GCLC). Taken together, our data suggest that hydrangenol can prevent wrinkle formation by reducing MMP and inflammatory cytokine levels and increasing the expression of moisturizing factors and antioxidant genes.


Subject(s)
Dermatologic Agents/pharmacology , Hydrangea/chemistry , Isocoumarins/pharmacology , Plant Extracts/pharmacology , Plant Leaves/chemistry , Skin Aging/drug effects , Skin/drug effects , Ultraviolet Rays/adverse effects , Water/metabolism , Animals , Antioxidants/metabolism , Collagen Type I/metabolism , Collagen Type I, alpha 1 Chain , Cytokines/metabolism , Dermatologic Agents/isolation & purification , Inflammation Mediators/metabolism , Isocoumarins/isolation & purification , Male , Matrix Metalloproteinase 13/metabolism , Matrix Metalloproteinase 3/metabolism , Mice, Hairless , Plant Extracts/isolation & purification , Proteolysis , Signal Transduction , Skin/metabolism , Skin/pathology , Skin/radiation effects , Skin Aging/radiation effects
17.
Cells ; 8(10)2019 09 27.
Article in English | MEDLINE | ID: mdl-31569788

ABSTRACT

The current treatment options for inflammatory bowel disease (IBD) are unsatisfactory. Therefore, novel and safer therapies are needed. We previously reported that koreanaside A (KA) showed high radical scavenging activity and suppressed vascular cell adhesion molecule 1 (VCAM-1) expression in vascular smooth muscle cells. However, the molecular mechanisms involved in its anti-inflammatory effect have not been reported. KA inhibited pro-inflammatory mediators such as inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2), nitric oxide (NO), and prostaglandin E2 (PGE2). KA inhibited the production and mRNA expression of interleukin (IL)-6 and tumor necrosis factor-α (TNF-α) induced by LPS. KA downregulated the myeloid differentiation primary response 88 (MyD88)-dependent inflammatory gene expressions in the MyD88-overexpressed cells. KA suppressed the LPS-induced transcriptional and DNA-binding activities of activator protein-1 (AP-1) and nuclear factor-kappa B (NF-κB). KA was found to inhibit the phosphorylation of Janus kinase 1/2 (JAK1/2) and signal transducers and activators of transcription 1/3 (STAT1/3). In DSS-induced colitis mice, KA relieved the symptoms of colitis by suppressing inflammatory cell infiltration, restoring tight junction (TJ)- and epithelial-mesenchymal transition (EMT)-related protein expression, and inactivating AP-1, NF-κB, and STAT1/3. Therefore, KA reduced inflammatory responses by downregulating AP-1, NF-κB, and JAK/STAT signaling in LPS-induced macrophages and DSS-induced colitis mice.


Subject(s)
Anti-Inflammatory Agents/pharmacology , Colitis/drug therapy , Gene Expression Regulation/drug effects , Glycosides/pharmacology , Lignans/chemistry , Lignans/pharmacology , Macrophage Activation/drug effects , Plant Extracts/pharmacology , Animals , Anti-Inflammatory Agents/isolation & purification , Colitis/chemically induced , Colitis/metabolism , Colitis/pathology , Dextran Sulfate/toxicity , Flowers/chemistry , Forsythia/chemistry , Glycosides/isolation & purification , Janus Kinase 1/genetics , Janus Kinase 1/metabolism , Lignans/isolation & purification , Lipopolysaccharides/pharmacology , Male , Mice , Mice, Inbred C57BL , NF-kappa B/genetics , NF-kappa B/metabolism , RAW 264.7 Cells , STAT Transcription Factors/genetics , STAT Transcription Factors/metabolism , Signal Transduction , Transcription Factor AP-1/genetics , Transcription Factor AP-1/metabolism
18.
Molecules ; 24(20)2019 Oct 18.
Article in English | MEDLINE | ID: mdl-31635244

ABSTRACT

Chrysanthemum boreale is a plant widespread in East Asia, used in folk medicine to treat various disorders, such as pneumonia, colitis, stomatitis, and carbuncle. Whether the essential oil from C. boreale (ECB) and its active constituents have anti-proliferative activities in lung cancer is unknown. Therefore, we investigated the cytotoxic effects of ECB in A549 and NCI-H358 human lung cancer cells. Culture of A549 and NCI-H358 cells with ECB induced apoptotic cell death, as revealed by an increase in annexin V staining. ECB treatment reduced mitochondrial membrane potential (MMP), disrupted the balance between pro-apoptotic and anti-apoptotic Bcl-2 proteins, and activated caspase-8, -9, and -3, as assessed by western blot analysis. Interestingly, pretreatment with a broad-spectrum caspase inhibitor (z-VAD-fmk) significantly attenuated ECB-induced apoptosis. Furthermore, gas chromatography-mass spectrometry (GC/MS) analysis of ECB identified six compounds. Among them, ß-caryophyllene exhibited a potent anti-proliferative effect, and thus was identified as the major active compound. ß- Caryophyllene induced G1 cell cycle arrest by downregulating cyclin D1, cyclin E, cyclin-dependent protein kinase (CDK) -2, -4, and -6, and RB phosphorylation, and by upregulating p21CIP1/WAF1 and p27KIP1. These results indicate that ß-caryophyllene exerts cytotoxic activity in lung cancer cells through induction of cell cycle arrest.


Subject(s)
Cell Cycle Proteins/metabolism , Chrysanthemum/chemistry , Lung Neoplasms/metabolism , Polycyclic Sesquiterpenes/pharmacology , A549 Cells , Cell Cycle Checkpoints , Cell Line, Tumor , Cell Proliferation/drug effects , Cell Survival/drug effects , Gene Expression Regulation, Neoplastic/drug effects , Humans , Lung Neoplasms/drug therapy , Membrane Potential, Mitochondrial/drug effects , Oils, Volatile/pharmacology
19.
J Clin Pharmacol ; 59(11): 1485-1494, 2019 11.
Article in English | MEDLINE | ID: mdl-31090078

ABSTRACT

Acetaminophen and Ojeok-san are both frequently used analgesics. In this study, we evaluated acetaminophen pharmacokinetics (PK) and changes in microRNA-122 (miR-122) levels after multiple dosing of acetaminophen with or without Ojeok-san. An open-label, 1-sequence, 2-period, 2-treatment crossover study was conducted in 18 subjects. In period 1, 500 mg of acetaminophen was administered 3 times on day 1 and once on day 2. In period 2, after the administration of 14.47 g of Ojeok-san twice on day 2 and 3 times daily on days 3 to 7, Ojeok-san and acetaminophen were coadministered 3 times each on day 8 and once each on day 9. The geometric mean ratios (90% confidence intervals) of acetaminophen with Ojeok-san to acetaminophen alone were 0.98 (0.87 to 1.10) and 1.02 (0.98 to 1.05) for the maximum plasma concentration (Cmax ) and the area under the plasma concentration-time curve during the dosing interval (AUC0-τ ), respectively, of acetaminophen at steady state. The alanine aminotransferase (ALT) levels were within the reference range in all the participants throughout the study period, although the mean fold changes in both serum miR-122 and ALT levels from baseline tended to increase on days 2 to 5. In conclusion, the PK properties of acetaminophen were not significantly affected by Ojeok-san coadministration. For osteoarthritis patients taking acetaminophen with or without Ojeok-san, monitoring potential liver toxicity using miR-122 as a biomarker may be useful.


Subject(s)
Acetaminophen/pharmacology , Plant Extracts/pharmacokinetics , Acetaminophen/administration & dosage , Adult , Alanine Transaminase/blood , Analgesics, Non-Narcotic/administration & dosage , Biomarkers , Cross-Over Studies , Humans , Male , MicroRNAs/blood , Middle Aged
20.
Biol Pharm Bull ; 42(3): 424-431, 2019.
Article in English | MEDLINE | ID: mdl-30828074

ABSTRACT

Hydrangea serrata (THUNB.) SER. (Hydrangeaceae) leaves have been used as herbal teas in Korea and Japan. The objective of this study was to identify anti-photoaging compounds in aqueous EtOH extract prepared from leaves of H. serrata and their effects on UVB-irradiated Hs68 human foreskin fibroblasts. Phytochemical study on H. serrata leaves led to the isolation and characterization of ten compounds: hydrangenol, thunberginol A, thunberginol C, hydrangenoside A, hydrangenoside C, cudrabibenzyl A, 2,3,4'-trihydroxystilbene, thunberginol F, quercetin 3-O-ß-D-xylopyranosyl (1-2)-ß-D-galactopyranoside, quercetin 3-O-ß-D-xylopyranosyl (1-2)-ß-D-glucopyranoside. Cudrabibenzyl A, 2,3,4'-trihydroxystilbene, quercetin 3-O-ß-D-xylopyranosyl (1-2)-ß-D-galactopyranoside, quercetin 3-O-ß-D-xylopyranosyl (1-2)-ß-D-glucopyranoside were firstly isolated from H. serrata. We estimated the effects of 10 compounds on cell viability and production of pro-collagen Type I, matrix metalloproteinase (MMP)-1, and hyaluronic acid (HA) after UVB irradiation. Of these compounds, hydrangenol showed potent preventive activities against reduced cell viability and degradation of pro-collagen Type I in UVB-irradiated Hs68 fibroblasts. Hydrangenol had outstanding inductive activities on HA production. It suppressed mRNA expression levels of MMP-1, MMP-3, hyaluronidase (HYAL)-1, HYAL-2, cyclooxygenase-2 (COX-2), interleukin (IL)-6, IL-8, and IL-1ß in UVB-irradiated Hs68 fibroblasts. When Hs68 fibroblasts were exposed to hydrangenol after UVB irradiation, UVB-induced reactive oxygen species (ROS) production was suppressed. Hydrangenol also inhibited the activation of activator protein-1 (AP-1) and signal transduction and activation of transcription 1 (STAT-1) by downregulating phosphorylation of p38 and extracellular signal-regulated kinase (ERK). Our data indicate that hydrangenol isolated from H. serrata leaves has potential protective effects on UVB-induced skin photoaging.


Subject(s)
Fibroblasts/drug effects , Fibroblasts/radiation effects , Plant Extracts/pharmacology , Plant Leaves/chemistry , Ultraviolet Rays/adverse effects , Cell Line , Cell Survival/drug effects , Cell Survival/radiation effects , Humans , Hydrangea , Plant Extracts/chemistry , Skin Aging
SELECTION OF CITATIONS
SEARCH DETAIL