Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters

Database
Type of study
Country/Region as subject
Language
Publication year range
1.
BMC Vet Res ; 20(1): 133, 2024 Apr 03.
Article in English | MEDLINE | ID: mdl-38570815

ABSTRACT

BACKGROUND: Obesity is a serious disease with an alarmingly high incidence that can lead to other complications in both humans and dogs. Similar to humans, obesity can cause metabolic diseases such as diabetes in dogs. Natural products may be the preferred intervention for metabolic diseases such as obesity. The compound 1-deoxynojirimycin, present in Morus leaves and other sources has antiobesity effects. The possible antiobesity effect of 1-deoxynojirimycin containing Morus alba leaf-based food was studied in healthy companion dogs (n = 46) visiting the veterinary clinic without a history of diseases. Body weight, body condition score (BCS), blood-related parameters, and other vital parameters of the dogs were studied. Whole-transcriptome of blood and gut microbiome analysis was also carried out to investigate the possible mechanisms of action and role of changes in the gut microbiome due to treatment. RESULTS: After 90 days of treatment, a significant antiobesity effect of the treatment food was observed through the reduction of weight, BCS, and blood-related parameters. A whole-transcriptome study revealed differentially expressed target genes important in obesity and diabetes-related pathways such as MLXIPL, CREB3L1, EGR1, ACTA2, SERPINE1, NOTCH3, and CXCL8. Gut microbiome analysis also revealed a significant difference in alpha and beta-diversity parameters in the treatment group. Similarly, the microbiota known for their health-promoting effects such as Lactobacillus ruminis, and Weissella hellenica were abundant (increased) in the treatment group. The predicted functional pathways related to obesity were also differentially abundant between groups. CONCLUSIONS: 1-Deoxynojirimycin-containing treatment food have been shown to significantly improve obesity. The identified genes, pathways, and gut microbiome-related results may be pursued in further studies to develop 1-deoxynojirimycin-based products as candidates against obesity.


Subject(s)
Diabetes Mellitus , Dog Diseases , Gastrointestinal Microbiome , Metabolic Diseases , Morus , Humans , Animals , Dogs , 1-Deoxynojirimycin/pharmacology , Plant Extracts/pharmacology , Obesity/drug therapy , Obesity/veterinary , Diabetes Mellitus/veterinary , Metabolic Diseases/veterinary , Plant Leaves
2.
Int J Mol Sci ; 23(23)2022 Dec 02.
Article in English | MEDLINE | ID: mdl-36499541

ABSTRACT

Overweight and obesity, associated with various health complications, refer to abnormal or excessive fat accumulation conditions that harm health. Like humans, obesity is a growing problem in dogs, which may increase the risk of serious diseases such as diabetes and cancer. Mulberry leaf has shown potential anti-obesity and anti-diabetes effects in several studies. Our research studied the impact of mulberry leaf supplements in healthy old overweight dogs for 12 weeks. Blood and fecal samples were collected from the dogs before and after treatment for different analyses, including whole transcriptome and gut microbiome analysis. The Body Condition Score (BCS) and blood glucose levels were significantly decreased in all mulberry treatment groups, which justifies the anti-obesity effect of mulberry leaf in dogs. Throughout the whole transcriptome study, the downregulation of PTX3 and upregulation of PDCD-1, TNFRSF1B, RUNX3, and TICAM1 genes in the high mulberry group were found, which have been associated with anti-inflammatory effects in the literature. It may be an essential gene expression mechanism responsible for the anti-inflammatory and, subsequently, anti-obesity effects associated with mulberry leaf treatment, as confirmed by real-time polymerase chain reaction analysis. In microbiome analysis, Papillibacter cinnamivorans, related to the Mediterranean diet, which may cause anti-inflammatory effects, were abundant in the same treatment group. Further studies may be required to establish the gene expression mechanism and role of abundant bacteria in the anti-obesity effect of mulberry supplements in dogs. Overall, we propose mulberry leaves as a portion of food supplements for improving blood glucose levels and the anti-inflammation of blood in companion dogs.


Subject(s)
Diabetes Mellitus , Morus , Humans , Dogs , Animals , Aged , Blood Glucose , Plant Leaves/metabolism , Obesity/metabolism , Overweight/complications , Dietary Supplements , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/therapeutic use , Plant Extracts/pharmacology , Plant Extracts/therapeutic use
3.
Sci Rep ; 11(1): 16334, 2021 08 11.
Article in English | MEDLINE | ID: mdl-34381138

ABSTRACT

Like humans, weight control in overweight dogs is associated with a longer life expectancy and a healthier life. Dietary supplements are one of the best strategies for controlling obesity and obesity-associated diseases. This study was conducted to assess the potential of black ginseng (BG) and silkworm (SW) as supplements for weight control in diet-induced overweight beagle dogs. To investigate the changes that occur in dogs administered the supplements, different obesity-related parameters, such as body condition score (BCS), blood fatty acid profile, transcriptome, and microbiome, were assessed in high energy diet (HD) and HD with BG + SW supplementation (HDT) groups of test animals. After 12 weeks of BG + SW supplementation, total cholesterol and triglyceride levels were reduced in the HDT group. In the transcriptome analysis, nine genes (NUGGC, EFR3B, RTP4, ACAN, HOXC4, IL17RB, SOX13, SLC18A2, and SOX4) that are known to be associated with obesity were found to be differentially expressed between the ND (normal diet) and HD groups as well as the HD and HDT groups. Significant changes in some taxa were observed between the HD and ND groups. These data suggest that the BG + SW supplement could be developed as dietary interventions against diet-induced obesity, and obesity-related differential genes could be important candidates in the mechanism of the anti-obesity effects of the BG + SW supplement.


Subject(s)
Biological Products/pharmacology , Bombyx/chemistry , Gastrointestinal Microbiome/drug effects , Obesity/drug therapy , Overweight/drug therapy , Panax/chemistry , Transcriptome/drug effects , Animals , Diet, High-Fat/methods , Dietary Supplements , Dogs , Female , Male , Overweight/chemically induced
4.
J Med Food ; 24(2): 135-144, 2021 Feb.
Article in English | MEDLINE | ID: mdl-33617365

ABSTRACT

Thrombosis causes poor blood circulation, which may lead to several cardiovascular disorders. Antiplatelet aggregation and antihyperlipidemia are the key processes that improve blood circulation. The antiplatelet aggregation and antihyperlipidemic effects of ACG-1, a mixture of Angelica gigas, Cynanchum wilfordii, and Ginkgo biloba extracts, were investigated in this study. The antiplatelet aggregation activity of ACG-1 was determined by studying its effects on collagen-induced platelet aggregation in human platelet-rich plasma (PRP). In addition, the effects of ACG-1 were investigated in a thromboembolism mouse model. The high-fat diet (HFD)-fed mouse model was used to investigate the antihyperlipidemic effects of ACG-1 and western blotting assay was performed to elucidate its mechanism of action. It was observed that ACG-1 significantly inhibited platelet aggregation in human PRP. Furthermore, ACG-1 showed protective effects in a thromboembolism mouse model induced by administering a mixed collagen and epinephrine intravenous injection. Oral administration of ACG-1 also significantly ameliorated blood lipid profiles in the HFD-fed mouse model. In conclusion, ACG-1 should be considered a powerful functional food to improve blood circulation.


Subject(s)
Angelica , Blood Circulation , Cynanchum , Ginkgo biloba , Plant Extracts , Platelet Aggregation , Angelica/chemistry , Animals , Blood Circulation/drug effects , Cynanchum/chemistry , Disease Models, Animal , Ginkgo biloba/chemistry , Humans , Mice , Plant Extracts/pharmacology , Platelet Aggregation/drug effects , Platelet Aggregation Inhibitors/pharmacology , Thromboembolism/drug therapy
5.
Clin Exp Emerg Med ; 4(3): 182-185, 2017 Sep.
Article in English | MEDLINE | ID: mdl-29026893

ABSTRACT

Descending necrotizing mediastinitis (DNM) is a rare form of mediastinal infection. Most cases are associated with esophageal rupture. DNM after a trigger point injection in the upper trapezius has not been described previously. We present a case of DNM after a trigger point injection in the upper trapezius. A 70-year-old man visited the emergency department with chest discomfort and fever after a trigger point injection in the left upper trapezius. Chest computed tomography showed evidence of DNM, and antibiotic therapy was immediately administered intravenously. Because of the risk of sudden death, poor prognosis due to underlying disease, and his age, he declined surgical treatment and died of septic shock. Although trigger point injections are generally considered safe, caution should be used in patients with an underlying disease or in the elderly. Early diagnosis, broad-spectrum antibiotics, and aggressive surgical management are essential to improve the prognosis.

6.
J Food Sci ; 76(6): C891-9, 2011 Aug.
Article in English | MEDLINE | ID: mdl-22417487

ABSTRACT

UNLABELLED: Reportedly policosanols (PCs) have various beneficial functionalities on health. A gas chromatography-tandem mass spectrometry (GC-MS/MS) with a low limit of detection (LOD), and high specificity, recovery, and precision was successfully established for the PC analysis in vegetable oils. The LODs for the PCs were in the range of 0.002 to 0.016 µg/mL. The relative standard deviation (RSD) for the repeated analysis of PCs was less than 3.356%. The mean recoveries for spiked heptacosanol and octacosanol in vegetable oil were 102.3% and 106.3%, respectively. The total PC contents in the vegetable oils varied from 3.01 to 427.83 mg/kg oil. Perilla seed, grape seed, and rice bran oils were found to be highly rich sources of PCs, containing 427.83, 245.15, and 171.17 mg PCs/kg oil, respectively. Corn, sesame, and soybean oils contained only a negligible quantity of PCs. The PC composition in vegetable oils was greatly source dependent. In perilla seed oil, octacosanol was the single most predominant component, representing 55.93% of the total PC. In grape seed oil, however, hexacosanol is the most abundant PC, followed by octacosanol, tetracosanol, and triacontanol in a decreasing order. The major PCs in rice bran oil were triacontanol, octacosanol, hexacosanol, and tetracosanol, which constituted over 87.3% of the total PC. This represents the 1st report on the composition and contents of PC in most vegetable oils analyzed here. PRACTICAL APPLICATION: The information might be used for the development of vegetable oil products with beneficial functionality.


Subject(s)
Fatty Alcohols/analysis , Food Analysis/methods , Plant Oils/chemistry , Analytic Sample Preparation Methods , Chromatography, Thin Layer , Diet/ethnology , Fatty Alcohols/chemistry , Gas Chromatography-Mass Spectrometry , Korea , Limit of Detection , Oryza/chemistry , Perilla/chemistry , Reproducibility of Results , Rice Bran Oil , Seeds/chemistry , Tandem Mass Spectrometry , Vitis/chemistry , alpha-Linolenic Acid/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL