Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 25
Filter
1.
Nutrients ; 15(15)2023 Jul 26.
Article in English | MEDLINE | ID: mdl-37571255

ABSTRACT

The causal effects of chondroitin, glucosamine, and vitamin/mineral supplement intake on kidney function remain unknown, despite being commonly used. We conducted a two-sample summary-level Mendelian randomization (MR) analysis to test for causal associations between regular dietary supplement intake and kidney function. Genetic instruments for chondroitin, glucosamine, and vitamin/mineral supplement intake were obtained from a genome-wide association study of European ancestry. Summary statistics for the log-transformed estimated glomerular filtration rate (log-eGFR) were provided by the CKDGen consortium. The multiplicative random-effects inverse-variance weighted method showed that genetically predicted chondroitin and glucosamine intake was causally associated with a lower eGFR (chondroitin, eGFR change beta = -0.113%, standard error (SE) = 0.03%, p-value = 2 × 10-4; glucosamine, eGFR change beta = -0.240%, SE = 0.035%, p-value = 6 × 10-12). However, a genetically predicted vitamin/mineral supplement intake was associated with a higher eGFR (eGFR change beta = 1.426%, SE = 0.136%, p-value = 1 × 10-25). Validation analyses and pleiotropy-robust MR results for chondroitin and vitamin/mineral supplement intake supported the main results. Our MR study suggests a potential causal effect of chondroitin and glucosamine intake on kidney function. Therefore, clinicians should carefully monitor their long-term effects.


Subject(s)
Glucosamine , Vitamins , Mendelian Randomization Analysis , Genome-Wide Association Study , Chondroitin , Polymorphism, Single Nucleotide , Kidney , Minerals
2.
J Med Food ; 26(9): 616-623, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37523293

ABSTRACT

The crucial role of the gut microbiome in various diseases has led to increased interest in interventions and therapeutics targeting the human microbiome. Accordingly, the current scoping review analyzed the diseases and interventions involved in gut microbiome research in Africa. The electronic databases of PubMed, Google Scholar, and Scopus were searched from inception to October 2021. This study identified 48 studies involving 7073 study participants. Of the 48 studies, 20 (42%) used interventions to modulate gut microbiota, whereas the remaining 28 (58%) did not. Out of the total African countries, only 13% were involved in intervention-based gut microbiome research, whereas a larger proportion of 67% were not involved in any gut microbiome research. The interventions used in gut microbiome research in Africa include supplements, natural products, educational approaches, associated pathogens, albendazole, fresh daily yogurt, iron-containing lipid-based nutrient supplements, fecal microbiota transplant, and prophylactic cotrimoxazole. This scoping review highlights the current state of gut microbiome research in Africa. The findings of this review can inform the design of future studies and interventions aimed at improving gut health in African populations.


Subject(s)
Gastrointestinal Microbiome , Microbiota , Humans , Africa , Dietary Supplements
3.
Funct Integr Genomics ; 23(3): 200, 2023 Jun 07.
Article in English | MEDLINE | ID: mdl-37284890

ABSTRACT

MiRNAs are small non-coding RNA molecules that play important regulatory roles in diverse biological processes. Royal jelly, a milky-white substance produced by nurse honeybees (Apis mellifera), is the primary food of queen bees and plays a crucial role in their development. However, little is known about the microRNA (miRNAs) content of royal jelly and their potential functions. In this study, we isolated extracellular vesicles from the royal jelly of 36 samples through sequential centrifugation and targeted nanofiltration and performed high-throughput sequencing to identify and quantify the miRNA content of honeybee royal jelly extracellular vesicles (RJEVs). We found a total of 29 known mature miRNAs and 17 novel miRNAs. Through bioinformatic analysis, we identified several potential target genes of the miRNAs present in royal jelly, including those involved in developmental processes and cell differentiation. To investigate the potential roles of RJEVs in cell viability, RJEVs were supplemented to apoptotic porcine kidney fibroblasts induced by ethanol 6% exposure for 30 min. TUNEL assay showed a significant reduction in the apoptosis percentage after RJEV supplementation when compared with the non-supplemented control group. Moreover, the wound healing assay performed on the apoptotic cells showed a rapid healing capacity of RJEV-supplemented cells compared to the control group. We observed a significant reduction in the expression of the miRNA target genes such as FAM131B, ZEB1, COL5A1, TRIB2, YBX3, MAP2, CTNNA1, and ADAMTS9 suggesting that RJEVs may regulate the target gene expression associated with cellular motility and cell viability. Moreover, RJEVs reduced the expression of apoptotic genes (CASP3, TP53, BAX, and BAK), while significantly increasing the expression of anti-apoptotic genes (BCL2 and BCL-XL). Our findings provide the first comprehensive analysis of the miRNA content of RJEVs and suggest a potential role for these vesicles in the regulation of gene expression and cell survival as well as augmenting cell resurrection or anastasis.


Subject(s)
Extracellular Vesicles , MicroRNAs , Animals , Swine , Cell Survival , MicroRNAs/genetics , Fatty Acids/metabolism , Extracellular Vesicles/genetics , Extracellular Vesicles/metabolism
4.
Kidney Int Rep ; 8(4): 851-859, 2023 Apr.
Article in English | MEDLINE | ID: mdl-37069993

ABSTRACT

Introduction: Selenium is a trace mineral that is commonly included in micronutrient supplements. The effect of selenium on kidney function remains unclear. A genetically predicted micronutrient and its association with estimated glomerular filtration rate (eGFR) can be used to assess the causal estimates by Mendelian randomization (MR). Methods: In this MR study, we instrumented 11 genetic variants associated with blood or total selenium levels from a previous genome-wide association study (GWAS). The association between genetically predicted selenium concentration and eGFR was first assessed by summary-level MR in the chronic kidney disease(CKDGen) GWAS meta-analysis summary statistics, including 567,460 European samples. Inverse-variance weighted and pleiotropy-robust MR analyses were performed, in addition to multivariable MR adjusted for the effects of type 2 diabetes mellitus. Replication analysis was performed with individual-level UK Biobank data, including 337,318 White individuals of British ancestry. Results: Summary-level MR analysis indicated that a genetically predicted 1 SD increase in selenium concentration was significantly associated with lower eGFR (-1.05 [-1.28, -0.82] %). The results were similarly reproduced by pleiotropy-robust MR analysis, including MR-Egger and weighted-median methods, and consistent even in the multivariable MR adjusted for diabetes. In the UK Biobank data, genetically predicted higher selenium concentration was also significantly associated with lower eGFR (- 0.36 [-0.52, -0.20] %), and the results were similar when body mass index, waist circumference, hypertension, and diabetes mellitus covariates were adjusted (-0.33 [-0.50, -0.17] %). Conclusion: This MR study supports the hypothesis that higher genetically predicted body selenium is causally associated with lower eGFR.

5.
Phytomedicine ; 108: 154520, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36334386

ABSTRACT

BACKGROUND: The development of digital technologies and the evolution of open innovation approaches have enabled the creation of diverse virtual organizations and enterprises coordinating their activities primarily online. The open innovation platform titled "International Natural Product Sciences Taskforce" (INPST) was established in 2018, to bring together in collaborative environment individuals and organizations interested in natural product scientific research, and to empower their interactions by using digital communication tools. METHODS: In this work, we present a general overview of INPST activities and showcase the specific use of Twitter as a powerful networking tool that was used to host a one-week "2021 INPST Twitter Networking Event" (spanning from 31st May 2021 to 6th June 2021) based on the application of the Twitter hashtag #INPST. RESULTS AND CONCLUSION: The use of this hashtag during the networking event period was analyzed with Symplur Signals (https://www.symplur.com/), revealing a total of 6,036 tweets, shared by 686 users, which generated a total of 65,004,773 impressions (views of the respective tweets). This networking event's achieved high visibility and participation rate showcases a convincing example of how this social media platform can be used as a highly effective tool to host virtual Twitter-based international biomedical research events.


Subject(s)
Biological Products , Social Media , Humans
6.
J Hepatol ; 77(3): 735-747, 2022 09.
Article in English | MEDLINE | ID: mdl-35421426

ABSTRACT

BACKGROUND & AIMS: Mitochondrial dysfunction is considered a pathogenic linker in the development of non-alcoholic steatohepatitis (NASH). Inappropriate mitochondrial protein-quality control, possibly induced by insufficiency of the mitochondrial matrix caseinolytic protease P (ClpP), can potentially cause mitochondrial dysfunction. Herein, we aimed to investigate hepatic ClpP levels in a diet-induced model of NASH and determine whether supplementation of ClpP can ameliorate diet-induced NASH. METHODS: NASH was induced by a high-fat/high-fructose (HF/HFr) diet in C57BL/6J mice. Stress/inflammatory signals were induced in mouse primary hepatocytes (MPHs) by treatment with palmitate/oleate (PA/OA). ClpP levels in hepatocytes were reduced using the RNAi-mediated gene knockdown technique but increased through the viral transduction of ClpP. ClpP activation was induced by administering a chemical activator of ClpP. RESULTS: Hepatic ClpP protein levels in C57BL/6J mice fed a HF/HFr diet were lower than the levels in those fed a normal chow diet. PA/OA treatment also decreased the ClpP protein levels in MPHs. Overexpression or activation of ClpP reversed PA/OA-induced mitochondrial dysfunction and stress/inflammatory signal activation in MPHs, whereas ClpP knockdown induced mitochondrial dysfunction and stress/inflammatory signals in these cells. On the other hand, ClpP overexpression or activation improved HF/HFr-induced NASH characteristics such as hepatic steatosis, inflammation, fibrosis, and injury in the C57BL/6J mice, whereas ClpP knockdown further augmented steatohepatitis in mice fed a HF/HFr diet. CONCLUSIONS: Reduced ClpP expression and subsequent mitochondrial dysfunction are key to the development of diet-induced NASH. ClpP supplementation through viral transduction or chemical activation represents a potential therapeutic strategy to prevent diet-induced NASH. LAY SUMMARY: Western diets, containing high fat and high fructose, often induce non-alcoholic steatohepatitis (NASH). Mitochondrial dysfunction is considered pathogenically linked to diet-induced NASH. We observed that the mitochondrial protease ClpP decreased in the livers of mice fed a western diet and supplementation of ClpP ameliorated western diet-induced NASH.


Subject(s)
Non-alcoholic Fatty Liver Disease , Animals , Diet, High-Fat/adverse effects , Dietary Supplements , Disease Models, Animal , Endopeptidase Clp , Fructose/adverse effects , Fructose/metabolism , Liver/pathology , Mice , Mice, Inbred C57BL , Mitochondria/metabolism , Non-alcoholic Fatty Liver Disease/etiology , Non-alcoholic Fatty Liver Disease/metabolism , Non-alcoholic Fatty Liver Disease/prevention & control , Oleic Acid/metabolism , Peptide Hydrolases/metabolism
7.
J Med Food ; 25(2): 130-137, 2022 Feb.
Article in English | MEDLINE | ID: mdl-35148193

ABSTRACT

COVID-19 has become a global infectious pandemic affecting the entire world with complications related to the lungs and compromised immune systems. Recently, cytokine storms, which are hallmarks of the disease, have been identified in most COVID-19 patients. In addition, vitamin D deficiency is increasingly appearing to be another element exposing COVID-19 patients to a preferential increase in their symptoms. In an effort to identify a possible link between cytokine storms and vitamin D deficiency to streamline a possible treatment, an in silico analysis using bioinformatics approach was performed using collections of highly expressed cytokines in both severe acute respiratory syndrome and COVID-19 patients (commonly elevated cytokines) as well as vitamin D deficiency-associated genes (VD). Gene Multiple Association Network Integration Algorithm was used for network interactions, whereas the Enrichr enrichment analysis tool was used for biological functions. The network analysis GLay clustering results indicated the vitamin D receptor as a possible link between these two groups. Furthermore, cell chemotaxis and chemotactic-related features were identified as significantly affected pathways, which serve as possible key players mitigating cytokine storms under low vitamin D availability.


Subject(s)
COVID-19 , Vitamin D Deficiency , Cytokine Release Syndrome , Humans , SARS-CoV-2 , Vitamin D , Vitamin D Deficiency/complications , Vitamin D Deficiency/genetics
8.
Nutrients ; 13(5)2021 Apr 28.
Article in English | MEDLINE | ID: mdl-33924952

ABSTRACT

We aimed to investigate the causal effects of n-3 and n-6 polyunsaturated fatty acids (PUFAs) on the risk of coronary artery disease (CAD) through Mendelian randomization (MR) analysis. This MR study utilized a genetic instrument developed from previous genome-wide association studies for various serum n-3 and n-6 PUFA levels. First, we calculated the allele scores for genetic predisposition of PUFAs in individuals of European ancestry in the UK Biobank data (N = 337,129). The allele score-based MR was obtained by regressing the allele scores to CAD risks. Second, summary-level MR was performed with the CARDIoGRAMplusC4D data for CAD (N = 184,305). Higher genetically predicted eicosapentaenoic acid and dihomo-gamma-linolenic acid levels were significantly associated with a lower risk of CAD both in the allele-score-based and summary-level MR analyses. Higher allele scores for linoleic acid level were significantly associated with lower CAD risks, and in the summary-level MR, the causal estimates by the pleiotropy-robust MR methods also indicated that higher linoleic acid levels cause a lower risk of CAD. Arachidonic acid showed significant causal estimates for a higher risk of CAD. This study supports the causal effects of certain n-3 and n-6 PUFA types on the risk of CAD.


Subject(s)
Coronary Artery Disease/blood , Fatty Acids, Omega-3/blood , Fatty Acids, Omega-6/blood , Mendelian Randomization Analysis/methods , Cohort Studies , Female , Humans , Male , Middle Aged , United Kingdom
9.
Expert Rev Neurother ; 21(4): 405-418, 2021 04.
Article in English | MEDLINE | ID: mdl-33621149

ABSTRACT

Introduction: Galvanic vestibular stimulation (GVS) is a noninvasive technique that activates vestibular afferents, influencing activity and oscillations in a broad network of brain regions. Several studies have suggested beneficial effects of GVS on motor symptoms in Parkinson's Disease (PD).Areas covered: A comprehensive overview of the stimulation techniques, potential mechanisms of action, challenges, and future research directions.Expert opinion: This emerging technology is not currently a viable therapy. However, a complementary therapy that is inexpensive, easily disseminated, customizable, and portable is sufficiently enticing that continued research and development is warranted. Future work utilizing biomedical engineering approaches, including concomitant functional neuroimaging, have the potential to significantly increase efficacy. GVS could be explored for other PD symptoms including orthostatic hypotension, dyskinesia, and sleep disorders.


Subject(s)
Parkinson Disease , Vestibule, Labyrinth , Brain , Electric Stimulation , Humans , Parkinson Disease/therapy
10.
Nutrients ; 12(5)2020 May 21.
Article in English | MEDLINE | ID: mdl-32455724

ABSTRACT

Serum high-density lipoprotein cholesterol (HDL-C) levels and cholesterol excretion are closely associated with the risk of cardiovascular complications. The specific aim of the present study was to investigate the cholesterol lowering effect of mulberry fruit in rats fed a high cholesterol/cholic acid diet. Four-week supplementation with mulberry fruit extract significantly decreased serum and hepatic cholesterol (TC), serum low-density lipoprotein cholesterol (LDL-C), and fecal bile acid levels without changes in body weight and food intake (p < 0.05). Mulberry fruit extract significantly inhibited hepatic sterol-regulatory element binding protein (Srebp) 2 gene expression and upregulated hepatic mRNA levels of liver X receptor alpha (Lxr-α), ATP-binding cassette transporter 5 (Abcg5), and cholesterol 7 alpha-hydroxylase (Cyp7a1), which are involved in hepatic bile acid synthesis and cholesterol metabolism (p < 0.05). In addition, hepatic microRNA-33 expression was significantly inhibited by supplementation of mulberry fruit extract (p < 0.05). These results suggest the involvement of miR-33, its associated hepatic bile acid synthesis, HDL formation, and cholesterol metabolism in mulberry fruit-mediated beneficial effects on serum and hepatic lipid abnormalities.


Subject(s)
Cholesterol, HDL/blood , Cholesterol/adverse effects , Cholic Acid/adverse effects , Fruit/chemistry , Liver/metabolism , MicroRNAs/metabolism , Morus/chemistry , Plant Extracts/pharmacology , ATP Binding Cassette Transporter, Subfamily G, Member 5/genetics , Animals , Bile Acids and Salts , Cholesterol/blood , Cholesterol 7-alpha-Hydroxylase/genetics , Disease Models, Animal , Gene Expression Regulation , Hypercholesterolemia/metabolism , Lipoproteins/genetics , Lipoproteins, LDL/blood , Liver/pathology , Liver X Receptors/genetics , Male , MicroRNAs/genetics , RNA, Messenger/genetics , RNA, Messenger/metabolism , Rats , Rats, Sprague-Dawley , Sterol Regulatory Element Binding Protein 2/genetics , Sterol Regulatory Element Binding Protein 2/metabolism
11.
Nutrients ; 11(3)2019 Mar 18.
Article in English | MEDLINE | ID: mdl-30889894

ABSTRACT

Obesity is intimately related to a chronic inflammatory state, with augmentation of macrophage infiltration and pro-inflammatory cytokine secretion in white adipose tissue (WAT) and mitochondrial dysfunction in skeletal muscle. The specific aim of this study is to evaluate effects of tartary buckwheat extract (TB) on obesity-induced adipose tissue inflammation and muscle peroxisome proliferator-activated receptor-γ coactivator (PGC)-1α/sirtulin 1 (SIRT1) pathway in rats fed a high-fat diet. Sprague-Dawley rats were divided into four groups and fed either a normal diet (NOR), 45% high-fat diet (HF), HF + low dose of TB (TB-L; 5 g/kg diet), or HF + high dose of TB (TB-H; 10 g/kg diet) for 13 weeks. TB significantly reduced adipose tissue mass with decreased adipogenic gene expression of PPAR-γ and aP2. Serum nitric oxide levels and adipose tissue macrophage M1 polarization gene markers, such as iNOS, CD11c, and Arg1, and pro-inflammatory gene expression, including TNF-α, IL-6, and MCP-1, were remarkably downregulated in the TB-L and TB-H groups. Moreover, TB supplementation increased gene expression of PGC-1α and SIRT1, involved in muscle biogenesis and function. These results suggested that TB might attenuate obesity-induced inflammation and mitochondrial dysfunction by modulating adipose tissue inflammation and the muscle PGC-1α/SIRT1 pathway.


Subject(s)
Adipose Tissue/metabolism , Fagopyrum , Inflammation/prevention & control , Muscle, Skeletal/metabolism , Obesity/complications , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/metabolism , Sirtuin 1/metabolism , Animals , Cytokines/metabolism , Diet, High-Fat , Down-Regulation , Inflammation/etiology , Inflammation/metabolism , Macrophages/metabolism , Male , Nitric Oxide/blood , Phytotherapy , Plant Extracts/pharmacology , Plant Extracts/therapeutic use , Rats, Sprague-Dawley
12.
IEEE Trans Biomed Eng ; 66(1): 50-60, 2019 01.
Article in English | MEDLINE | ID: mdl-29993433

ABSTRACT

OBJECTIVE: noninvasive electrical brain stimulation (NEBS) can modulate brain dynamics and be used to induce changes in target brain areas. Because high-voltage stimulation artifacts tend to completely dominate the simultaneously recorded EEG and vary slightly trial by trial in both amplitude and phase, the majority of studies to date have simply compared poststimulation and prestimulation periods. Here, we propose the use of a modified joint blind source separation (JBSS) approach for removing stimulation artifacts when the same stimulus is applied in multiple epochs. METHODS: quadrature regression and subsequent independent vector analysis (q-IVA) was applied to simulated and real EEG datasets recorded from ten subjects who received theta-band galvanic vestibular stimulation. RESULTS: in simulations, q-IVA and JBSS approaches significantly improved the relative root-mean-squared error, correlation coefficient, and power deviation between the original and recovered EEG compared to conventional methods. In the real EEG data, after removing the artifacts with q-IVA, the power spectra during stimulation demonstrated significantly enhanced beta and gamma power compared to prestimulation, becoming similar to that seen in immediate poststimulation periods. In addition, we demonstrate that increased alpha power (8-13 Hz) in occipital regions with eye closure could be reliably detected in the cleaned EEG data after applying q-IVA. CONCLUSION: q-IVA and JBSS approaches outperform conventional artifact removal methods in both time and frequency domains. SIGNIFICANCE: our results provide a promising way to effectively isolate stimulation artifacts in EEG, paving the way for future studies attempting to uncover ongoing modulation of brain activity during NEBS.


Subject(s)
Artifacts , Electric Stimulation Therapy , Electroencephalography/methods , Signal Processing, Computer-Assisted , Aged , Aged, 80 and over , Algorithms , Brain/physiology , Female , Humans , Middle Aged
13.
Biol Pharm Bull ; 38(12): 1891-901, 2015.
Article in English | MEDLINE | ID: mdl-26458335

ABSTRACT

Alzheimer's disease (AD) is the most common neurodegenerative disorder, characterized by progressive neuronal loss with amyloid ß-peptide (Aß) plaques. Despite several drugs currently used to treat AD, their beneficial effects on AD progress remains under debate. Here, we established a rapid in vivo screening system using Drosophila AD models to assess the neuroprotective activities of medicinal plants that have been used in traditional Chinese medicine. Among 23 medicinal plants tested, the extracts from five plants, Coriandrum sativum, Nardostachys jatamansi, Polygonum multiflorum (P. multiflorum), Rehmannia glutinosa, and Sorbus commixta (S. commixta), showed protective effects against the Aß42 neurotoxicity. We further characterized the neuroprotective activity of ethanol extracts from P. multiflorum and S. commixta. Aß42-expressing flies that we used showed AD neurological phenotypes, such as decreased survival and motility and increased cell death and reactive oxygen species level. However, feeding these flies extracts from P. multiflorum or S. commixta showed strong suppression of such phenotypes. Similar results were observed in human cells, so that the treatment of P. multiflorum and S. commixta extracts increased the viability of Aß-treated SH-SY5Y cells. Moreover, 2,3,5,4'-tetrahydroxystilbene-2-O-ß-D-glucoside, one of the main constituents of P. multiflorum, also showed similar protective activity against Aß42 cytotoxicity in both Drosophila and human cells. Taken together, our results suggest that both P. multiflorum and S. commixta have therapeutic potential for the treatment of neurodegenerative diseases, such as AD.


Subject(s)
Alzheimer Disease/metabolism , Amyloid beta-Protein Precursor/metabolism , Drugs, Chinese Herbal/pharmacology , Magnoliopsida/chemistry , Neuroprotective Agents/pharmacology , Alzheimer Disease/drug therapy , Animals , Coriandrum/chemistry , Disease Models, Animal , Drosophila , Drug Evaluation, Preclinical , Fallopia multiflora/chemistry , Medicine, Chinese Traditional , Nardostachys/chemistry , Phytotherapy , Plants, Medicinal/chemistry , Rehmannia/chemistry , Sorbus/chemistry
14.
J Pharmacopuncture ; 18(3): 11-8, 2015 Sep.
Article in English | MEDLINE | ID: mdl-26388998

ABSTRACT

OBJECTIVES: Systems biology is a novel subject in the field of life science that aims at a systems' level understanding of biological systems. Because of the significant progress in high-throughput technologies and molecular biology, systems biology occupies an important place in research during the post-genome era. METHODS: The characteristics of systems biology and its applicability to traditional medicine research have been discussed from three points of view: data and databases, network analysis and inference, and modeling and systems prediction. RESULTS: The existing databases are mostly associated with medicinal herbs and their activities, but new databases reflecting clinical situations and platforms to extract, visualize and analyze data easily need to be constructed. Network pharmacology is a key element of systems biology, so addressing the multi-component, multi-target aspect of pharmacology is important. Studies of network pharmacology highlight the drug target network and network target. Mathematical modeling and simulation are just in their infancy, but mathematical modeling of dynamic biological processes is a central aspect of systems biology. Computational simulations allow structured systems and their functional properties to be understood and the effects of herbal medicines in clinical situations to be predicted. CONCLUSION: Systems biology based on a holistic approach is a pivotal research methodology for understanding the mechanisms of traditional medicine. If systems biology is to be incorporated into traditional medicine, computational technologies and holistic insights need to be integrated.

15.
J Ethnopharmacol ; 170: 201-9, 2015 Jul 21.
Article in English | MEDLINE | ID: mdl-26003723

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Ge-Gen-Tang (GGT) is a traditional Chinese medicinal formula composed of Puerariae radix (Pueraria lobata Ohwi), Ephedrae Herba (Ephedra sinica Stapf), Cinnamomi Ramulus (Cinnamomum cassia Blume), Paeoniae Radix (Paeonia lactiflora Pallas), Glycyrrhizae Radix preparata (Glycyrrhiza uralensis Fischer), Zingiberis Rhizoma (Zingiber officinale Roscoe), and Zizyphi Fructus (Ziziphus jujuba Mill. var. inermis Rehder) and is widely used to ameoliorate the symptoms of gastrointestinal (GI) disorders related to diarrhea and intestinal mucosal immunity and for anti-cold, antipyretic and analgesic in Eastern Asia. AIM OF THE STUDY: Interstitial cells of Cajal (ICCs) are pacemaker cells in the GI tract that generate rhythmic oscillations in membrane potentials known as slow waves. We investigated the effects of GGT on pacemaker potentials in cultured ICCs from the mouse small intestine, and sought to identify the receptors and the action mechanisms involved. MATERIALS AND METHODS: Enzymatic digestions were used to dissociate ICCs from mouse small intestine tissues. All experiments on ICCs were performed on within 12h after culture. A whole-cell patch-clamp configuration was used to record potentials (current clamp) from cultured ICCs. Intracellular Ca(2+) ([Ca(2+)]i) increase was studied in cultured ICCs using fura-2AM. All of the experiments were performed at 30-32°C. RESULTS: Under the current clamping mode, GGT decreased the amplitude and frequency of pacemaker potentials; however, these effects were blocked by intracellular GDPßS, a G-protein inhibitor, and glibenclamide, a specific ATP-sensitive K(+) channels blocker. Prazosin (α1-adrenoceptor antagonist) and butoxamine (ß2-adrenoceptor antagonist) did not block the GGT-induced effects, whereas atenolol (ß1-adrenoceptor antagonist) blocked the GGT-induced effects. Also, yohimbine (α2-adrenoceptor antagonist) partially blocked the GGT-induced effects. Pretreatment with SQ-22536, an adenylate cyclase inhibitor, did not block the GGT-induced effects, whereas pretreatment with ODQ, a guanylate cyclase inhibitor, or L-NAME, an inhibitor of nitric oxide (NO) synthase, did. Additionally, [Ca(2+)]i analysis showed that GGT decreased [Ca(2+)]i. CONCLUSION: These results suggest that GGT inhibits pacemaker potentials in ICCs in a G protein-, cGMP- and NO-dependent manner through stimulation of α2 and ß1-adrenoceptors.


Subject(s)
Drugs, Chinese Herbal/pharmacology , Interstitial Cells of Cajal/drug effects , KATP Channels/metabolism , Membrane Potentials/drug effects , Animals , Cells, Cultured , Cyclic GMP/metabolism , Female , Interstitial Cells of Cajal/metabolism , Intestine, Small/cytology , Intestine, Small/drug effects , Intestine, Small/metabolism , Male , Mice , Mice, Inbred BALB C , Nitric Oxide/metabolism , Patch-Clamp Techniques , Receptors, Adrenergic, alpha-2/drug effects , Receptors, Adrenergic, alpha-2/metabolism , Receptors, Adrenergic, beta-1/drug effects , Receptors, Adrenergic, beta-1/metabolism
16.
J Biol Chem ; 289(38): 26618-26629, 2014 Sep 19.
Article in English | MEDLINE | ID: mdl-25100724

ABSTRACT

Thiazolidinedione class of anti-diabetic drugs which are known as peroxisome proliferator-activated receptor γ (PPARγ) ligands have been used to treat metabolic disorders, but thiazolidinediones can also cause several severe side effects, including congestive heart failure, fluid retention, and weight gain. In this study, we describe a novel synthetic PPARγ ligand UNIST HYUNDAI Compound 1 (UHC1) that binds tightly to PPARγ without the classical agonism and which blocks cyclin-dependent kinase 5 (CDK5)-mediated PPARγ phosphorylation. We modified the non-agonist PPARγ ligand SR1664 chemically to improve its solubility and then developed a novel PPARγ ligand, UHC1. According to our docking simulation, UHC1 occupied the ligand-binding site of PPARγ with a higher docking score than SR1664. In addition, UHC1 more potently blocked CDK5-mediated PPARγ phosphorylation at Ser-273. Surprisingly, UHC1 treatment effectively ameliorated the inflammatory response both in vitro and in high-fat diet-fed mice. Furthermore, UHC1 treatment dramatically improved insulin sensitivity in high-fat diet-fed mice without causing fluid retention and weight gain. Taken together, compared with SR1664, UHC1 exhibited greater beneficial effects on glucose and lipid metabolism by blocking CDK5-mediated PPARγ phosphorylation, and these data indicate that UHC1 could be a novel therapeutic agent for use in type 2 diabetes and related metabolic disorders.


Subject(s)
Benzoates/pharmacology , Cyclin-Dependent Kinase 5/physiology , Diabetes Mellitus, Experimental/drug therapy , Hypoglycemic Agents/pharmacology , Indoles/pharmacology , PPAR gamma/metabolism , 3T3-L1 Cells , Adipogenesis/drug effects , Animals , Anti-Inflammatory Agents/chemistry , Anti-Inflammatory Agents/pharmacology , Benzoates/chemistry , Binding Sites , Biphenyl Compounds/chemistry , Biphenyl Compounds/pharmacology , Drug Evaluation, Preclinical , HEK293 Cells , Humans , Hydrogen Bonding , Hypoglycemic Agents/chemistry , Indoles/chemistry , Inflammation Mediators/metabolism , Insulin Resistance , Male , Mice , Mice, Inbred C57BL , Molecular Docking Simulation , PPAR gamma/agonists , PPAR gamma/chemistry , Phosphorylation , Protein Binding , Protein Processing, Post-Translational , Rats, Sprague-Dawley
17.
Article in English | MEDLINE | ID: mdl-24790636

ABSTRACT

Drosophila is one of the oldest and most powerful genetic models and has led to novel insights into a variety of biological processes. Recently, Drosophila has emerged as a model system to study human diseases, including several important neurodegenerative diseases. Because of the genomic similarity between Drosophila and humans, Drosophila neurodegenerative disease models exhibit a variety of human-disease-like phenotypes, facilitating fast and cost-effective in vivo genetic modifier screening and drug evaluation. Using these models, many disease-associated genetic factors have been identified, leading to the identification of compelling drug candidates. Recently, the safety and efficacy of traditional medicines for human diseases have been evaluated in various animal disease models. Despite the advantages of the Drosophila model, its usage in the evaluation of traditional medicines is only nascent. Here, we introduce the Drosophila model for neurodegenerative diseases and some examples demonstrating the successful application of Drosophila models in the evaluation of traditional medicines.

18.
Arch Biochem Biophys ; 535(2): 187-96, 2013 Jul 15.
Article in English | MEDLINE | ID: mdl-23562377

ABSTRACT

This study was initiated to determine whether the protective effect of nicotinamide (NAM) on high glucose/palmitate (HG/PA)-induced INS-1 beta cell death was due to its role as an anti-oxidant, nicotinamide dinucleotide (NAD+) precursor, or inhibitor of NAD+-consuming enzymes such as poly (ADP-ribose) polymerase (PARP) or sirtuins. All anti-oxidants tested were not protective against HG/PA-induced INS-1 cell death. Direct supplementation of NAD+ or indirect supplementation through NAD+ salvage or de novo pathway did not protect the death. Knockdown of the NAD+ salvage pathway enzymes such as nicotinamide phosphoribosyl transferase (NAMPT) or nicotinamide mononucleotide adenyltransferase (NMNAT) did not augment death. On the other hand, pharmacological inhibition or knockdown of PARP did not affect death. However, sirtinol as an inhibitor of NAD-dependant deacetylase or knockdown of SIRT3 or SIRT4 significantly reduced the HG/PA-induced death. These data suggest that protective effect of NAM on beta cell glucolipotoxicity is attributed to its inhibitory activity on sirtuins.


Subject(s)
Antioxidants/pharmacology , Glucose/metabolism , Insulin-Secreting Cells/drug effects , Niacinamide/pharmacology , Palmitates/metabolism , Sirtuins/antagonists & inhibitors , Acetylcysteine/pharmacology , Animals , Cell Death/drug effects , Cell Line, Tumor , Cell Survival/drug effects , Ephrin-B2/metabolism , Gene Knockdown Techniques , Glucose/toxicity , Glutathione/pharmacology , Insulin-Secreting Cells/cytology , MAP Kinase Kinase 4/metabolism , NAD/metabolism , NAD/pharmacology , Palmitates/toxicity , Phosphorylation , Poly Adenosine Diphosphate Ribose/antagonists & inhibitors , Proto-Oncogene Proteins c-akt/metabolism , Rats , Sirtuin 3/antagonists & inhibitors , Sirtuin 3/genetics , Sirtuin 3/metabolism , Sirtuins/genetics , Sirtuins/metabolism , Transcription Factor CHOP/metabolism
19.
Biol Pharm Bull ; 36(3): 390-8, 2013.
Article in English | MEDLINE | ID: mdl-23238278

ABSTRACT

SuHeXiang Wan (SHXW), a Chinese traditional medicine, has been used to treat infantile convulsions, seizures and strokes. Previously, we reported that modified SHXW, called KSOP1009, suppressed the hyper-activation of c-Jun N-terminal kinase (JNK) and Alzheimer's disease (AD)-like phenotypes in amyloid-ß42 (Aß42)-expressing Drosophila AD models. In the present study, we, further, investigated the detailed mechanism by which KSOP1009 suppresses the AD-like phenotypes of the model flies. As seen in the brains of AD patients, pan-neuronal expression of Aß42 in Drosophila increased activation of extracellular signal-regulated kinase (ERK), which was monitored by its phosphorylation level, and the number of glial cells in the brain. Suppression of caspase activity did not affect these phenomena, suggesting that Aß42 induces ERK activation and glial cell proliferation independently of apoptotic processes. KSOP1009 intake significantly reduced the level of ERK activation and the number of glial cells. Moreover, KSOP1009 intake also effectively decreased the defects in the wing vein formation induced by Epidermal growth factor receptor (Egfr) overexpression in fly wings, suggesting that it may contain an inhibitory substance that inhibits the EGFR/ERK signaling pathway. In addition, the Aß42-induced locomotive defect was partially rescued by inhibition of the elevated ERK activity through its antagonistic drug treatment. Taken together, these results suggest that KSOP1009 exerts its therapeutic effect by inhibiting the EGFR/ERK pathway and glial cell proliferation and by suppressing the JNK pathway and apoptosis.


Subject(s)
Alzheimer Disease/drug therapy , Amyloid beta-Peptides/toxicity , Drugs, Chinese Herbal/pharmacology , Extracellular Signal-Regulated MAP Kinases/metabolism , Neuroglia/drug effects , Neuroprotective Agents/pharmacology , Animals , Animals, Genetically Modified , Cell Proliferation/drug effects , Disease Models, Animal , Drosophila , ErbB Receptors/physiology , Humans , Phosphorylation
20.
Article in English | MEDLINE | ID: mdl-21912567

ABSTRACT

Topical retinoids inhibit matrix metalloproteinases and accelerate collagen synthesis, thereby triggering antiaging effects in the skin. However, topical retinoids can cause severe skin reactions, including scaling, erythema, papules, and inflammation. The present study demonstrates that the ethanolic bark extract of Alstonia scholaris R. Br. can significantly inhibit all-trans retinoic acid-induced inflammation in human HaCat keratinocyte cells. Furthermore, two representative retinoid-induced proinflammatory cytokines, monocyte chemoattractant protein-1 and interleukin-8, were significantly suppressed by A. scholaris extract (by 82.1% and 26.3% at 100 ppm, and dose-dependently across the tested concentrations) in vitro. In a cumulative irritation patch test, A. scholaris extract decreased retinol-induced skin irritation, while strengthening the ability of retinoids to inhibit matrix metalloproteinase-1 expression, which is strongly associated with aging effects. These results suggest that A. scholaris is a promising compound that may increase the antiaging function of retinoids while reducing their ability to cause skin irritation.

SELECTION OF CITATIONS
SEARCH DETAIL