Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Type of study
Language
Publication year range
1.
Nat Commun ; 13(1): 2664, 2022 05 13.
Article in English | MEDLINE | ID: mdl-35562389

ABSTRACT

Many synaptic proteins form biological condensates via liquid-liquid phase separation (LLPS). Synaptopathy, a key feature of autism spectrum disorders (ASD), is likely relevant to the impaired phase separation and/or transition of ASD-linked synaptic proteins. Here, we report that LLPS and zinc-induced liquid-to-gel phase transition regulate the synaptic distribution and protein-protein interaction of cortactin-binding protein 2 (CTTNBP2), an ASD-linked protein. CTTNBP2 forms self-assembled condensates through its C-terminal intrinsically disordered region and facilitates SHANK3 co-condensation at dendritic spines. Zinc binds the N-terminal coiled-coil region of CTTNBP2, promoting higher-order assemblies. Consequently, it leads to reduce CTTNBP2 mobility and enhance the stability and synaptic retention of CTTNBP2 condensates. Moreover, ASD-linked mutations alter condensate formation and synaptic retention of CTTNBP2 and impair mouse social behaviors, which are all ameliorated by zinc supplementation. Our study suggests the relevance of condensate formation and zinc-induced phase transition to the synaptic distribution and function of ASD-linked proteins.


Subject(s)
Autistic Disorder , Animals , Autistic Disorder/genetics , Mice , Microfilament Proteins/metabolism , Nerve Tissue Proteins/genetics , Nerve Tissue Proteins/metabolism , Social Behavior , Zinc/metabolism
2.
Cell Rep ; 31(9): 107700, 2020 06 02.
Article in English | MEDLINE | ID: mdl-32492416

ABSTRACT

Synaptic dysregulation is a critical feature of autism spectrum disorders (ASDs). Among various autism-associated genes, cortactin binding protein 2 (CTTNBP2) is a cytoskeleton regulator predominantly expressed in neurons and highly enriched at dendritic spines. Here, using Cttnbp2 knockout and ASD-linked mutant mice, we demonstrate that Cttnbp2 deficiency reduces zinc levels in the brain, alters synaptic protein targeting, impairs dendritic spine formation and ultrastructure of postsynaptic density, and influences neuronal activation and autism-like behaviors. A link to autism, the NMDAR-SHANK pathway, and zinc-related regulation are three features shared by CTTNBP2-regulated synaptic proteins. Zinc supplementation rescues the synaptic expression of CTTNBP2-regulated proteins. Moreover, zinc supplementation and administration of D-cycloserine, an NMDAR coagonist, improve the social behaviors of Cttnbp2-deficient mice. We suggest that CTTNBP2 controls the synaptic expression of a set of zinc-regulated autism-associated genes and influences NMDAR function and signaling, providing an example of how genetic and environmental factor crosstalk controls social behaviors.


Subject(s)
Dendritic Spines/metabolism , Microfilament Proteins/metabolism , Nerve Tissue Proteins/metabolism , Zinc/metabolism , Animals , Behavior, Animal/drug effects , Calmodulin-Binding Proteins/genetics , Calmodulin-Binding Proteins/metabolism , Cycloserine/pharmacology , Dendritic Spines/ultrastructure , Dietary Supplements , Female , Gene Expression Regulation/drug effects , Male , Membrane Proteins/genetics , Membrane Proteins/metabolism , Mice , Mice, Inbred C57BL , Mice, Knockout , Microfilament Proteins/genetics , Nerve Tissue Proteins/genetics , Neurons/cytology , Neurons/metabolism , Receptors, N-Methyl-D-Aspartate/metabolism , Signal Transduction/drug effects , Social Behavior , Zinc/pharmacology , rac GTP-Binding Proteins/genetics , rac GTP-Binding Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL