Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Complementary Medicines
Database
Language
Affiliation country
Publication year range
1.
J Clin Pharmacol ; 62(1): 87-98, 2022 01.
Article in English | MEDLINE | ID: mdl-34352114

ABSTRACT

Burosumab is a fully human monoclonal antibody against fibroblast growth factor 23, which has been approved to treat X-linked hypophosphatemia (XLH) in adult and pediatric patients. The present work describes the pharmacokinetics (PK) of burosumab and the pharmacokinetic-pharmacodynamic (PK-PD) relationship between burosumab and serum phosphorus in adult and pediatric patients with XLH. A total of 2844 measurable serum concentrations of burosumab and 6047 measurable serum concentrations of phosphorus in 277 subjects from 9 clinical studies were included in the population PK and PK-PD modeling. The serum concentration of burosumab following a subcutaneous administration was well described by a population PK model comprising a first-order absorption, 1-compartmental distribution, and a linear elimination. The relationship between serum burosumab and serum phosphorus was adequately described by a sigmoid maximal efficacy model. Body weight was the only covariate associated with PK and PK-PD parameters. No other intrinsic factors affected PK or PK-PD relationship in adult and pediatric patients with XLH. Further simulations helped to guide the dosing regimen of burosumab in adult and pediatric patients with XLH including age groups with no clinical data.


Subject(s)
Antibodies, Monoclonal, Humanized/pharmacology , Antibodies, Monoclonal, Humanized/therapeutic use , Familial Hypophosphatemic Rickets/drug therapy , Phosphorus/blood , Adolescent , Adult , Age Factors , Aged , Antibodies, Monoclonal, Humanized/pharmacokinetics , Body Weight , Child , Child, Preschool , Dose-Response Relationship, Drug , Female , Fibroblast Growth Factors/immunology , Humans , Infant , Injections, Subcutaneous , Male , Middle Aged , Models, Biological , Young Adult
2.
Clin Pharmacol Drug Dev ; 10(11): 1325-1334, 2021 11.
Article in English | MEDLINE | ID: mdl-33789001

ABSTRACT

Long-chain fatty acid oxidation disorders (LC-FAODs) are a group of life-threatening autosomal recessive disorders caused by defects in nuclear genes encoding mitochondrial enzymes involved in the conversion of dietary long-chain fatty acids into energy. Triheptanoin is an odd-carbon, medium-chain triglyceride consisting of 3 fatty acids with 7 carbons each on a glycerol backbone developed to treat adult and pediatric patients with LC-FAODs. The pharmacokinetics of triheptanoin and circulating metabolites were explored in healthy subjects and patients with LC-FAODs using noncompartmental analyses. Systemic exposure to triheptanoin following an oral administration was negligible, as triheptanoin is extensively hydrolyzed to glycerol and heptanoate in the gastrointestinal tract. Multiple peaks for triheptanoin metabolites were observed in the plasma following oral administration of triheptanoin, generally coinciding with the time that meals were served. Heptanoate, the pharmacologically active metabolite of triheptanoin supplementing energy sources in patients with LC-FAODs, showed the greatest exposure among the metabolites of triheptanoin in human plasma following oral administration of triheptanoin. The exposure of heptanoate was approximately 10-fold greater than that of beta-hydroxypentoate, a downstream metabolite of heptanoate. Exposure to triheptanoin metabolites appeared to increase following multiple doses as compared with the single dose, and with the increase in triheptanoin dose levels.


Subject(s)
3-Hydroxybutyric Acid/metabolism , Fatty Acids/metabolism , Heptanoates/metabolism , Lipid Metabolism, Inborn Errors/drug therapy , Triglycerides/pharmacokinetics , Adolescent , Adult , Child , Cross-Over Studies , Female , Healthy Volunteers , Humans , Lipid Metabolism, Inborn Errors/metabolism , Male , Middle Aged , Oxidation-Reduction , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL