Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
J Nanobiotechnology ; 16(1): 104, 2018 Dec 20.
Article in English | MEDLINE | ID: mdl-30572896

ABSTRACT

BACKGROUND: Recently, a combination of photodynamic therapy (PDT) and photothermal therapy (PTT) to generate reactive oxygen species (ROS) and heat to kill cancer cells, respectively has attracted considerable attention because it gives synergistic effects on the cancer treatment by utilizing the radiation of nontoxic low-energy photons such as long wavelength visible light and near IR (NIR) penetrating into subcutaneous region. For the effective combination of the phototherapies, various organic photosensitizer-conjugated gold nanocomplexes have been developed, but they have still some disadvantages due to photobleaching and unnecessary energy transfer of the organic photosensitizers. RESULTS: In this study, we fabricated novel inorganic phototherapeutic nanocomplexes (Au NR-TiO2 NCs) by conjugating gold nanorods (Au NRs) with defective TiO2 nanoparticle clusters (d-TiO2 NP clusters) and characterized their optical and photothermal properties. They were observed to absorb a broad range of visible light and near IR (NIR) from 500 to 1000 nm, exhibiting the generation of ROS as well as the photothermal effect for the simultaneous application of PDT and PTT. The resultant combination of PDT and PTT treatments of HeLa cells incubated with the nanocomplexes caused a synergistic increase in the cell death compared to the single treatment. CONCLUSION: The higher efficacy of cell death by the combination of PDT and PTT treatments with the nanocomplexes is likely attributed to the increases of ROS generation from the TiO2 NCs with the aid of local surface plasma resonance (LSPR)-induced hot electrons and heat generation from Au NRs, suggesting that Au NR-TiO2 NCs are promising nanomaterials for the in vivo combinatorial phototherapy of cancer.


Subject(s)
Gold , Metal Nanoparticles , Nanotubes/chemistry , Photochemotherapy , Titanium , Antineoplastic Agents/chemistry , Antineoplastic Agents/therapeutic use , HeLa Cells , Humans , Photochemotherapy/methods , Photosensitizing Agents/chemistry
2.
J Food Sci ; 80(3): C510-4, 2015 Mar.
Article in English | MEDLINE | ID: mdl-25678328

ABSTRACT

To compare the oxidative stability between diacylglycerol (DAG) oil and conventional triacylglycerol (TAG) oil (that is, soybean oil), the prepared stripped diacylglycerol oil (SDO) and soybean oil (SSBO) were stored at 60 °C in the dark for 144 h. During storage peroxide values (POVs), contents of aldehydes, unsaturated fatty acids were measured to evaluate the oxidative stabilities of the 2 oils. The results showed the content of C18:2, C18:3, and total unsaturated fatty acid decreased faster in DAG oil than in soybean oil, whereas the decreased rate of C18:1 was similar in 2 oils. Also, both rate constants (K1 and K2) obtained from POV (K1 ) and total aldehydes (K2 ) indicated that DAG oil (K1 = 3.22 mmol/mol FA h(-1) , K2 = 0.023 h(-1)) was oxidized more rapidly than soybean oil (K1 = 2.56 mmol/mol FA h(-1) , K2 = 0.021 h(-1)), which was mainly due to the difference of acylglycerol composition of the 2 oils along with higher C18:3 (9.6%) in SDO than SSBO (5.7%). It is concluded that DAG was more easily oxidized than soybean oil at 60 °C in the dark for 144 h.


Subject(s)
Diglycerides/analysis , Lipid Peroxidation , Oils/analysis , Soybean Oil/analysis , Triglycerides/analysis , Diet , Glycerides/analysis , Humans , Oxidation-Reduction
SELECTION OF CITATIONS
SEARCH DETAIL