Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Fish Physiol Biochem ; 42(6): 1595-1607, 2016 Dec.
Article in English | MEDLINE | ID: mdl-27380381

ABSTRACT

AMP-activated protein kinase (AMPK) is a highly conserved and multi-functional protein kinase that plays important roles in both intracellular energy balance and cellular stress response. In the present study, molecular characterization, tissue distribution and gene expression levels of the AMPK α1 and α2 genes from turbot (Scophthalmus maximus) under salinity stress are described. The complete coding regions of the AMPK α1 and α2 genes were isolated from turbot through degenerate primers in combination with RACE using muscle cDNA. The complete coding regions of AMPK α1 (1722 bp) and α2 (1674 bp) encoded 573 and 557 amino acids peptides, respectively. Multiple alignments, structural analysis and phylogenetic tree construction indicated that S. maximus AMPK α1 and α2 shared a high amino acid identity with other species, especially fish. AMPK α1 and α2 genes could be detected in all tested tissues, indicating that they are constitutively expressed. Salinity challenges significantly altered the gene expression levels of AMPK α1 and α2 mRNA in a salinity- and time-dependent manners in S. maximus gill tissues, suggesting that AMPK α1 and α2 played important roles in mediating the salinity stress in S. maximus. The expression levels of AMPK α1 and α2 mRNA were a positive correlation with gill Na+, K+-ATPase activities. These findings will aid our understanding of the molecular mechanism of juvenile turbot in response to environmental salinity changes.


Subject(s)
AMP-Activated Protein Kinases/genetics , Fish Proteins/genetics , Flatfishes/genetics , Salinity , Stress, Physiological/genetics , Amino Acid Sequence , Animals , Base Sequence , DNA, Complementary/genetics , Fish Proteins/metabolism , Flatfishes/metabolism , Gene Expression , Gills/enzymology , Phylogeny , Protein Isoforms/genetics , RNA, Messenger/metabolism , Sodium-Potassium-Exchanging ATPase/metabolism
2.
Fish Shellfish Immunol ; 33(4): 725-35, 2012 Oct.
Article in English | MEDLINE | ID: mdl-22796426

ABSTRACT

In vertebrates, lymphoid-specific recombinase protein encoded by recombination-activating genes (RAG1/2) plays a key role in V(D)J recombination of the T-cell receptor and B-cell receptor. In this study, both RAG1 and the immunoglobulin M (IgM) mu chain were cloned to characterize their potential role in the immune defense at developmental stages of red-spotted grouper, Epinephelus akaara. The open reading frame (ORF) of E. akaara RAG1 included 2778 nucleotide residues encoding a putative protein of 925 amino acids, while the ORF of the IgM mu chain had 1734 nucleotide residues encoding 578 amino acids including variable (VH) and constant (CH1-CH2-CH3-CH4) regions. E. akaara RAG1 was composed of a zinc-binding dimerization domain (ZDD) with a RING finger and zinc finger A (ZFA) in the non-core region and a nonamer-binding region (NBR), with a zinc finger B (ZFB), the central and C-terminal domains in the core region. Tridimensional models of the ZDD and NBR of E. akaara RAG1 were constructed for the first time in fishes, while a 3D model of the E. akaara IgM mu chain was also clarified. The RAG1 mRNA was only detected in the thymus and kidney of 4-month and 1.5-year old groupers using qPCR, and the RAG1 protein was confirmed using western blotting and immunohistochemistry. The IgM mu mRNA was examined in most tissues except the gonad. RAG1 and IgM mu gene expression were observed at 15 dph (days post-hatching) and 23 dph respectively, and increased to a higher level at 37 dph. In addition, this was the first time that the morphology of the E. akaara thymus was characterized. The oval-shaped thymus of 4-month old fish was clearly seen and there were amounts of T lymphocytes present. The results suggested that the immune action of E. akaara was likely to start to develop around 15 dph to 29 dph. The transcript level of the RAG1 gene and the number of lymphocytes in the thymus between 4-month and 1.5-year old groupers indicated that age-related thymic atrophy also occurs in fishes. The similar functional structures of RAG1 and IgM protein between fish and mammals indicated that teleost species share a similar mechanism of V(D)J recombination with higher vertebrates.


Subject(s)
Bass/anatomy & histology , Bass/genetics , Fish Proteins/genetics , Homeodomain Proteins/genetics , Immunoglobulin M/genetics , Thymus Gland/anatomy & histology , Amino Acid Sequence , Animals , Base Sequence , Bass/immunology , Bass/metabolism , Blotting, Western/veterinary , Cloning, Molecular , DNA, Complementary/analysis , DNA, Complementary/genetics , Fish Proteins/metabolism , Gene Expression Regulation, Developmental , Homeodomain Proteins/metabolism , Immunoglobulin M/metabolism , Immunoglobulin mu-Chains/genetics , Immunoglobulin mu-Chains/metabolism , Molecular Conformation , Molecular Sequence Data , Nucleic Acid Amplification Techniques/veterinary , Organ Specificity , Phylogeny , Sequence Alignment/veterinary , Thymus Gland/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL