Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 37
Filter
1.
Addict Biol ; 27(6): e13238, 2022 11.
Article in English | MEDLINE | ID: mdl-36301208

ABSTRACT

Embryonic exposure to ethanol increases the risk for alcohol use disorder in humans and stimulates alcohol-related behaviours in different animal models. Evidence in rats and zebrafish suggests that this phenomenon induced by ethanol at low-moderate concentrations involves a stimulatory effect on neurogenesis and density of hypothalamic neurons expressing the peptides, hypocretin/orexin (Hcrt) and melanin-concentrating hormone (MCH), known to promote alcohol consumption. Building on our report in zebrafish showing that ethanol induces ectopic expression of Hcrt neurons outside the hypothalamus, we investigated here whether embryonic ethanol exposure also induces ectopic peptide neurons in rats similar to zebrafish and affects their morphological characteristics and if these ectopic neurons are functional and have a role in the ethanol-induced disturbances in behaviour. We demonstrate in rats that ethanol at a low-moderate dose, in addition to increasing Hcrt and MCH neurons in the lateral hypothalamus where they are normally concentrated, induces ectopic expression of these peptide neurons further anterior in the nucleus accumbens core and ventromedial caudate putamen where they have not been previously observed and causes morphological changes relative to normally located hypothalamic neurons. Similar to rats, embryonic ethanol exposure at a low-moderate dose in zebrafish induces ectopic Hcrt neurons anterior to the hypothalamus and alters their morphology. Notably, laser ablation of these ectopic Hcrt neurons blocks the behavioural effects induced by ethanol exposure, including increased anxiety and locomotor activity. These findings suggest that the ectopic peptide neurons are functional and contribute to the ethanol-induced behavioural disturbances related to the overconsumption of alcohol.


Subject(s)
Ethanol , Neurons , Orexins , Prenatal Exposure Delayed Effects , Animals , Rats , Ethanol/metabolism , Hypothalamus/drug effects , Neurons/drug effects , Orexins/metabolism , Zebrafish
2.
Sci Rep ; 11(1): 16078, 2021 08 09.
Article in English | MEDLINE | ID: mdl-34373563

ABSTRACT

Neurons expressing the neuropeptide hypocretin/orexin (Hcrt) in the hypothalamus promote reward-related behaviors including alcohol consumption and are shown in rodents and zebrafish to be stimulated by embryonic exposure to ethanol (EtOH). We used here in zebrafish three-dimensional analyses of the entire population of Hcrt neurons to examine how embryonic EtOH exposure at low-moderate concentrations (0.1% or 0.5% v/v) alters these neurons in relation to behavior. We found that EtOH in the water for 2 h (22-24 h post fertilization) increases the number of Hcrt neurons on the left but not right side of the brain through a stimulation of cell proliferation, this is accompanied by a decrease in locomotor activity under novel conditions but not after habituation, and these effects are evident in both larvae and adults indicating they are long lasting. Our analyses in adults revealed sexually dimorphic effects, with females consuming more EtOH-gelatin and exhibiting more freezing behavior along with an asymmetric increase in Hcrt neurons and males exhibiting increased aggression with no change in Hcrt. These findings suggest that a long lasting, asymmetric increase in Hcrt neurons induced by EtOH results from an asymmetric increase in proliferation specific to Hcrt and contributes to behavioral changes in females.


Subject(s)
Behavior, Animal/drug effects , Embryo, Nonmammalian/drug effects , Ethanol/pharmacology , Neurons/drug effects , Orexins/metabolism , Zebrafish/metabolism , Animals , Animals, Genetically Modified/metabolism , Cell Proliferation/drug effects , Embryo, Nonmammalian/metabolism , Female , Hypothalamus/drug effects , Hypothalamus/metabolism , Locomotion/drug effects , Male , Neurons/metabolism , Neuropeptides/metabolism , Sex Characteristics
3.
Alcohol Clin Exp Res ; 44(12): 2519-2535, 2020 12.
Article in English | MEDLINE | ID: mdl-33067812

ABSTRACT

BACKGROUND: Embryonic exposure to ethanol (EtOH) produces marked disturbances in neuronal development and alcohol-related behaviors, with low-moderate EtOH doses stimulating neurogenesis without producing apoptosis and high doses having major cytotoxic effects while causing gross morphological abnormalities. With the pro-inflammatory chemokine system, Cxcl12, and its main receptor Cxcr4, known to promote processes of neurogenesis, we examined here this neuroimmune system in the embryonic hypothalamus to test directly if it mediates the stimulatory effects low-moderate EtOH doses have on neuronal development. METHODS: We used the zebrafish (Danio rerio) model, which develops externally and allows one to investigate the developing brain in vivo with precise control of dose and timing of EtOH delivery in the absence of maternal influence. Zebrafish were exposed to low-moderate EtOH doses (0.1, 0.25, 0.5% v/v), specifically during a period of peak hypothalamic development from 22 to 24 hours postfertilization, and in some tests were pretreated from 2 to 22 hpf with the Cxcr4 receptor antagonist, AMD3100. Measurements in the hypothalamus at 26 hpf were taken of cxcl12a and cxcr4b transcription, signaling, and neuronal density using qRT-PCR, RNAscope, and live imaging of transgenic zebrafish. RESULTS: Embryonic EtOH exposure, particularly at the 0.5% dose, significantly increased levels of cxcl12a and cxcr4b mRNA in whole embryos, number of cxcl12a and cxcr4b transcripts in developing hypothalamus, and internalization of Cxcr4b receptors in hypothalamic cells. Embryonic EtOH also caused an increase in the number of hypothalamic neurons and coexpression of cxcl12a and cxcr4b transcripts within these neurons. Each of these stimulatory effects of EtOH in the embryo was blocked by pretreatment with the Cxcr4 antagonist AMD3100. CONCLUSIONS: These results provide clear evidence that EtOH's stimulatory effects at low-moderate doses on the number of hypothalamic neurons early in development are mediated, in part, by increased transcription and intracellular activation of this chemokine system, likely due to autocrine signaling of Cxcl12a at its Cxcr4b receptor within the neurons.


Subject(s)
Chemokine CXCL12/metabolism , Ethanol/pharmacology , Hypothalamus/drug effects , Neurons/drug effects , Receptors, CXCR4/metabolism , Zebrafish Proteins/metabolism , Animals , Benzylamines/pharmacology , Cell Count , Cyclams/pharmacology , Embryo, Nonmammalian/drug effects , Hypothalamus/cytology , Hypothalamus/embryology , Neurogenesis/drug effects , Zebrafish/embryology
4.
J Neuroinflammation ; 17(1): 207, 2020 Jul 10.
Article in English | MEDLINE | ID: mdl-32650794

ABSTRACT

BACKGROUND: Clinical and animal studies show that alcohol consumption during pregnancy produces lasting behavioral disturbances in offspring, including increased alcohol drinking, which are linked to inflammation in the brain and disturbances in neurochemical systems that promote these behaviors. These include the neuropeptide, melanin-concentrating hormone (MCH), which is mostly expressed in the lateral hypothalamus (LH). Maternal ethanol administration at low-to-moderate doses, while stimulating MCH neurons without affecting apoptosis or gliogenesis, increases in LH the density of neurons expressing the inflammatory chemokine C-C motif ligand 2 (CCL2) and its receptor CCR2 and their colocalization with MCH. These neural effects associated with behavioral changes are reproduced by maternal CCL2 administration, reversed by a CCR2 antagonist, and consistently stronger in females than males. The present study investigates in the embryo the developmental origins of this CCL2/CCR2-mediated stimulatory effect of maternal ethanol exposure on MCH neurons. METHODS: Pregnant rats from embryonic day 10 (E10) to E15 during peak neurogenesis were orally administered ethanol at a moderate dose (2 g/kg/day) or peripherally injected with CCL2 or CCR2 antagonist to test this neuroimmune system's role in ethanol's actions. Using real-time quantitative PCR, immunofluorescence histochemistry, in situ hybridization, and confocal microscopy, we examined in embryos at E19 the CCL2/CCR2 system and MCH neurons in relation to radial glia progenitor cells in the hypothalamic neuroepithelium where neurons are born and radial glia processes projecting laterally through the medial hypothalamus that provide scaffolds for neuronal migration into LH. RESULTS: We demonstrate that maternal ethanol increases radial glia cell density and their processes while stimulating the CCL2/CCR2 system and these effects are mimicked by maternal administration of CCL2 and blocked by a CCR2 antagonist. While stimulating CCL2 colocalization with radial glia and neurons but not microglia, ethanol increases MCH neuronal number near radial glia cells and making contact along their processes projecting into LH. Further tests identify the CCL2/CCR2 system in NEP as a primary source of ethanol's sexually dimorphic actions. CONCLUSIONS: These findings provide new evidence for how an inflammatory chemokine pathway functions within neuroprogenitor cells to mediate ethanol's long-lasting, stimulatory effects on peptide neurons linked to adolescent drinking behavior.


Subject(s)
Chemokine CCL2/metabolism , Ethanol/toxicity , Hypothalamus/metabolism , Neuroepithelial Cells/metabolism , Receptors, CCR2/metabolism , Sex Characteristics , Animals , Embryonic Development/drug effects , Embryonic Development/physiology , Ethanol/administration & dosage , Female , Hypothalamus/drug effects , Hypothalamus/embryology , Male , Neuroepithelial Cells/drug effects , Neuroglia/drug effects , Neuroglia/metabolism , Neurons/drug effects , Neurons/metabolism , Pregnancy , Rats , Rats, Sprague-Dawley , Stem Cells/drug effects , Stem Cells/metabolism
5.
Alcohol Clin Exp Res ; 44(4): 866-879, 2020 04.
Article in English | MEDLINE | ID: mdl-32020622

ABSTRACT

BACKGROUND: Prenatal exposure to ethanol (EtOH) has lasting effects on neuropeptide and neuroimmune systems in the brain alongside detrimental alcohol-related behaviors. At low-to-moderate doses, prenatal EtOH stimulates neurogenesis in lateral hypothalamus (LH) and increases neurons that express the orexigenic peptides hypocretin/orexin (Hcrt/OX) and melanin-concentrating hormone (MCH), and the proinflammatory chemokine CCL2, which through its receptor CCR2 stimulates cell differentiation and movement. Our recent studies demonstrated that CCL2 and CCR2 colocalize with MCH neurons and are involved in EtOH's stimulatory effect on their development but show no relation to Hcrt/OX. Here, we investigated another chemokine, CXCL12, and its receptor, CXCR4, which promote neurogenesis and neuroprogenitor cell proliferation, to determine if they also exhibit peptide specificity in their response to EtOH exposure. METHODS: Pregnant rats were intraorally administered a moderate dose of EtOH (2 g/kg/d) from embryonic day 10 (E10) to E15. Their embryos and postnatal offspring were examined using real-time quantitative PCR and immunofluorescence histochemistry, to determine if EtOH affects CXCL12 and CXCR4 and the colocalization of CXCR4 with Hcrt/OX and MCH neurons in the LH and with radial glia neuroprogenitor cells in the hypothalamic neuroepithelium (NEP). RESULTS: Prenatal EtOH strongly stimulated CXCL12 and CXCR4 in LH neurons of embryos and postnatal offspring. This stimulation was significantly stronger in Hcrt/OX than MCH neurons in LH and also occurred in radial glia neuroprogenitor cells dense in the NEP. These effects were sexually dimorphic, consistently stronger in females than males. CONCLUSIONS: While showing prenatal EtOH exposure to have a sexually dimorphic, stimulatory effect on CXCL12 and CXCR4 in LH similar to CCL2 and its receptor, these results reveal their distinct relationship to the peptide neurons, with the former closely related to Hcrt/OX and the latter to MCH, and they link EtOH's actions in LH to a stimulatory effect on neuroprogenitor cells in the NEP.


Subject(s)
Central Nervous System Depressants/pharmacology , Chemokine CXCL12/drug effects , Ependymoglial Cells/drug effects , Ethanol/pharmacology , Hypothalamic Area, Lateral/drug effects , Neural Stem Cells/drug effects , Neurons/drug effects , Receptors, CXCR4/drug effects , Animals , Animals, Newborn , Cell Proliferation/drug effects , Chemokine CXCL12/metabolism , Embryo, Mammalian , Ependymoglial Cells/metabolism , Hypothalamic Area, Lateral/cytology , Hypothalamic Area, Lateral/metabolism , Hypothalamic Hormones/metabolism , Hypothalamus/cytology , Hypothalamus/drug effects , Hypothalamus/metabolism , Immunohistochemistry , Melanins/metabolism , Neural Stem Cells/metabolism , Neurogenesis/drug effects , Neurons/metabolism , Orexins/metabolism , Pituitary Hormones/metabolism , Rats , Real-Time Polymerase Chain Reaction , Receptors, CXCR4/metabolism
6.
Neuroscience ; 443: 188-205, 2020 09 01.
Article in English | MEDLINE | ID: mdl-31982472

ABSTRACT

Clinical and animal studies show maternal alcohol consumption during pregnancy causes in offspring persistent alterations in neuroimmune and neurochemical systems known to increase alcohol drinking and related behaviors. Studies in lateral hypothalamus (LH) demonstrate in adolescent offspring that maternal oral administration of ethanol stimulates the neuropeptide, melanin-concentrating hormone (MCH), together with the inflammatory chemokine C-C motif ligand 2 (CCL2) and its receptor CCR2 which are increased in most MCH neurons. These effects, consistently stronger in females than males, are detected in embryos, not only in LH but hypothalamic neuroepithelium (NEP) along the third ventricle where neurons are born and CCL2 is stimulated within radial glia progenitor cells and their laterally projecting processes that facilitate MCH neuronal migration toward LH. With ethanol's effects similarly produced by maternal peripheral CCL2 administration and blocked by CCR2 antagonist, we tested here using in utero intracerebroventricular (ICV) injections whether CCL2 acts locally within the embryonic NEP. After ICV injection of CCL2 (0.1 µg/µl) on embryonic day 14 (E14) when neurogenesis peaks, we observed in embryos just before birth (E19) a significant increase in endogenous CCL2 within radial glia cells and their processes in NEP. These auto-regulatory effects, evident only in female embryos, were accompanied by increased density of CCL2 and MCH neurons in LH, more strongly in females than males. These results support involvement of embryonic CCL2/CCR2 neuroimmune system in radial glia progenitor cells in mediating sexually dimorphic effects of maternal challenges such as ethanol on LH MCH neurons that colocalize CCL2 and CCR2.


Subject(s)
Hypothalamic Hormones , Third Ventricle , Animals , Chemokine CCL2/metabolism , Ependymoglial Cells/metabolism , Female , Hypothalamic Area, Lateral/metabolism , Hypothalamic Hormones/metabolism , Hypothalamus/metabolism , Male , Neurons/metabolism , Peptides , Pituitary Hormones , Pregnancy , Rats , Rats, Sprague-Dawley , Receptors, CCR2/metabolism , Stem Cells/metabolism , Third Ventricle/metabolism
7.
Neuroscience ; 424: 155-171, 2020 01 01.
Article in English | MEDLINE | ID: mdl-31705896

ABSTRACT

Maternal consumption of ethanol during pregnancy is known to increase the offspring's risk for developing alcohol use disorders and associated behavioral disturbances. Studies in adolescent and adult animals suggest the involvement of neuroimmune and neurochemical systems in the brain that control these behaviors. To understand the origin of these effects during early developmental stages, we examined in the embryo and neonate the effects of maternal intraoral administration of ethanol (2 g/kg/day) from embryonic day 10 (E10) to E15 on the inflammatory chemokine C-C motif ligand 2 (CCL2) and its receptor CCR2 in a specific, dense population of neurons in the lateral hypothalamus (LH), where they are closely related to an orexigenic neuropeptide, melanin-concentrating hormone (MCH), known to promote ethanol consumption and related behaviors. We found that prenatal ethanol exposure increases the expression and density of CCL2 and CCR2 cells along with MCH neurons in the LH and the colocalization of CCL2 with MCH. We also discovered that these effects are sexually dimorphic, consistently stronger in female embryos, and are blocked by maternal administration of a CCL2 antibody (1 and 5 µg/day, i.p., E10-E15) that neutralizes endogenous CCL2 and of a CCR2 antagonist INCB3344 (1 mg/day, i.p., E10-E15) that blocks CCL2's main receptor. These results, which in the embryo anatomically and functionally link the CCL2/CCR2 system to MCH neurons in the LH, suggest an important role for this neuroimmune system in mediating ethanol's sexually dimorphic, stimulatory effect on MCH neurons that may promote higher level of alcohol consumption described in females.


Subject(s)
Chemokine CCL2/biosynthesis , Ethanol/administration & dosage , Hypothalamus/metabolism , Prenatal Exposure Delayed Effects/metabolism , Receptors, CCR2/biosynthesis , Sex Characteristics , Animals , Animals, Newborn , Chemokine CCL2/antagonists & inhibitors , Ethanol/toxicity , Female , Hypothalamus/drug effects , Hypothalamus/embryology , Male , Neurons/drug effects , Neurons/metabolism , Pregnancy , Prenatal Exposure Delayed Effects/chemically induced , Pyrrolidines/pharmacology , Rats , Rats, Sprague-Dawley , Receptors, CCR2/antagonists & inhibitors
8.
Int Rev Neurobiol ; 136: 199-237, 2017.
Article in English | MEDLINE | ID: mdl-29056152

ABSTRACT

The neuropeptide orexin/hypocretin (OX), while largely transcribed within the hypothalamus, is released throughout the brain to affect complex behaviors. Primarily through the hypothalamus itself, OX homeostatically regulates adaptive behaviors needed for survival, including food intake, sleep-wake regulation, mating, and maternal behavior. However, through extrahypothalamic limbic brain regions, OX promotes seeking and intake of rewarding substances of abuse, like palatable food, alcohol, nicotine, and cocaine. This neuropeptide, in turn, is stimulated by the intake of or early life exposure to these substances, forming a nonhomeostatic, positive feedback loop. The specific OX receptor involved in these behaviors, whether adaptive behavior or substance seeking and intake, is dependent on the particular brain region that contributes to them. Thus, we propose that, while the primary function of OX is to maintain arousal for the performance of adaptive behaviors, this neuropeptide system is readily co-opted by rewarding substances that involve positive feedback, ultimately promoting their abuse.


Subject(s)
Alcohol Drinking/metabolism , Feeding and Eating Disorders/metabolism , Homeostasis/physiology , Hypothalamus/metabolism , Orexin Receptors/metabolism , Orexins/metabolism , Reward , Substance-Related Disorders/metabolism , Animals , Humans
9.
Addict Biol ; 22(1): 58-69, 2017 Jan.
Article in English | MEDLINE | ID: mdl-26223289

ABSTRACT

The paraventricular nucleus of the thalamus (PVT) appears to participate in drug addiction. Recent evidence in rats shows that ethanol drinking is increased by orexin/hypocretin (OX) afferents from the hypothalamus, acting specifically in the anterior (aPVT) rather than posterior (pPVT) PVT subregion. The present study sought to identify neuropeptides transcribed within the PVT, which themselves might contribute to ethanol drinking and possibly mediate the actions of OX. We discovered that substance P (SP) in the aPVT can stimulate intermittent-access ethanol drinking, similar to OX, and that SP receptor [neurokinin 1 receptor/tachykinin receptor 1 (NK1R)] antagonists in this subregion reduce ethanol drinking. As with OX, this effect is site specific, with SP in the pPVT or dorsal third ventricle having no effect on ethanol drinking, and it is behaviorally specific, with SP in the aPVT reducing the drinking of sucrose and stimulating it in the pPVT. A close relationship between SP and OX was demonstrated by a stimulatory effect of local OX injection on SP mRNA and peptide levels, specifically in the aPVT but not pPVT, and a stimulatory effect of OX on SP expression in isolated thalamic neurons, reflecting postsynaptic actions. A functional relationship between OX and SP in the aPVT is suggested by our additional finding that ethanol drinking induced by OX is blocked by a local NK1R antagonist administered at a sub-threshold dose. These results, suggesting that SP in the aPVT mediates the stimulatory effect of OX on ethanol drinking, identify a new role for SP in the control of this behavior.


Subject(s)
Behavior, Animal , Ethanol/administration & dosage , Hypothalamus/metabolism , Orexins/metabolism , Substance P/metabolism , Thalamic Nuclei/metabolism , Animals , Central Nervous System Depressants/administration & dosage , Male , Models, Animal , Neurotransmitter Agents/metabolism , Rats , Rats, Long-Evans
10.
Article in English | MEDLINE | ID: mdl-25689818

ABSTRACT

The hypothalamus is now known to regulate alcohol intake in addition to its established role in food intake, in part through neuromodulatory neurochemicals termed neuropeptides. Certain orexigenic neuropeptides act in the hypothalamus to promote alcohol drinking, although they affect different aspects of the drinking response. These neuropeptides, which include galanin, the endogenous opioid enkephalin, and orexin/hypocretin, appear to stimulate alcohol intake not only through mechanisms that promote food intake but also by enhancing reward and reinforcement from alcohol. Moreover, these neuropeptides participate in a positive feedback relationship with alcohol, whereby they are upregulated by alcohol intake to promote even further consumption. They contrast with other orexigenic neuropeptides, such as melanin-concentrating hormone and neuropeptide Y, which promote alcohol intake under limited circumstances, are not consistently stimulated by alcohol, and do not enhance reward. They also contrast with neuropeptides that can be anorexigenic, including the endogenous opioid dynorphin, corticotropin-releasing factor, and melanocortins, which act in the hypothalamus to inhibit alcohol drinking as well as reward and therefore counter the ingestive drive promoted by orexigenic neuropeptides. Thus, while multiple hypothalamic neuropeptides may work together to regulate different aspects of the alcohol drinking response, excessive signaling from orexigenic neuropeptides or inadequate signaling from anorexigenic neuropeptides can therefore allow alcohol drinking to become dysregulated.


Subject(s)
Alcoholism/metabolism , Hypothalamus/metabolism , Neuropeptides/metabolism , Animals , Humans , Hypothalamus/drug effects
11.
J Neurochem ; 135(5): 918-31, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26332891

ABSTRACT

Ingestion of a high-fat diet composed mainly of the saturated fatty acid, palmitic (PA), and the unsaturated fatty acid, oleic (OA), stimulates transcription in the brain of the opioid neuropeptide, enkephalin (ENK), which promotes intake of substances of abuse. To understand possible underlying mechanisms, this study examined the nuclear receptors, peroxisome proliferator-activated receptors (PPARs), and tested in hypothalamic and forebrain neurons from rat embryos whether PPARs regulate endogenous ENK and the fatty acids themselves affect these PPARs and ENK. The first set of experiments demonstrated that knocking down PPARδ, but not PPARα or PPARγ, increased ENK transcription, activation of PPARδ by an agonist decreased ENK levels, and PPARδ neurons coexpressed ENK, suggesting that PPARδ negatively regulates ENK. In the second set of experiments, PA treatment of hypothalamic and forebrain neurons had no effect on PPARδ protein while stimulating ENK mRNA and protein, whereas OA increased both mRNA and protein levels of PPARδ in forebrain neurons while having no effect on ENK mRNA and increasing ENK levels. These findings show that PA has a strong, stimulatory effect on ENK and weak effect on PPARδ protein, whereas OA has a strong stimulatory effect on PPARδ and weak effect on ENK, consistent with the inhibitory effect of PPARδ on ENK. They suggest a function for PPARδ, perhaps protective in nature, in embryonic neurons exposed to fatty acids from a fat-rich diet and provide evidence for a mechanism contributing to differential effects of saturated and monounsaturated fatty acids on neurochemical systems involved in consummatory behavior. Our findings show that PPARδ in forebrain and hypothalamic neurons negatively regulates enkephalin (ENK), a peptide known to promote ingestive behavior. This inverse relationship is consistent with our additional findings, that a saturated (palmitic; PA) compared to a monounsaturated fatty acid (oleic; OA) has a strong stimulatory effect on ENK and weak effect on PPARδ. These results suggest that PPARδ protects against the neuronal effects of fatty acids, which differentially affect neurochemical systems involved in ingestive behavior.


Subject(s)
Enkephalins/metabolism , Fatty Acids/metabolism , Hypothalamus/cytology , Neurons/metabolism , PPAR delta/metabolism , Prosencephalon/cytology , Animals , Cells, Cultured , Diet, High-Fat , Dose-Response Relationship, Drug , Embryo, Mammalian , Gene Expression Regulation/drug effects , Gene Expression Regulation/genetics , Oleic Acid/pharmacology , Palmitic Acid/pharmacology , RNA, Messenger , RNA, Small Interfering/genetics , RNA, Small Interfering/metabolism , Rats , Rats, Sprague-Dawley , Thiazoles/pharmacology , Transfection
12.
Addict Biol ; 20(3): 469-81, 2015 May.
Article in English | MEDLINE | ID: mdl-24712379

ABSTRACT

The paraventricular nucleus of the thalamus (PVT) has been shown to participate in hedonic feeding and is thought to influence drug seeking. This understudied nucleus contains anterior (aPVT) and posterior (pPVT) subregions, which receive dense projections from hypothalamic orexin/hypocretin (OX) but exhibit anatomical and functional differences. This study sought to characterize in Long-Evans rats the involvement of these PVT subregions and their OX receptor activity in consumption of the drug, ethanol. Compared with those maintained on water and chow only (water group), rats trained to drink pharmacologically relevant levels of ethanol (ethanol group) showed increased neuronal activation in the PVT, specifically the aPVT but not pPVT, as indicated by c-Fos immunoreactivity. Similar results were obtained in rats administered ethanol via oral gavage, indicating that this site-specific effect was due to ethanol exposure. In support of the involvement of OX, the ethanol group also showed increased mRNA levels of this neuropeptide in the hypothalamus and of OX 2 receptor (OX2R) but not OX 1 receptor (OX1R), again in the aPVT but not pPVT. Similarly, ethanol gavage increased double labeling of c-Fos with OX2R but not OX1R, specifically in the aPVT. Evidence directly supporting a role for aPVT OX2R in ethanol consumption was provided by results with local injections, showing ethanol intake to be enhanced by OX-A or OX-B in the aPVT but not pPVT and reduced by a local antagonist of OX2R but not OX1R. These results focus attention on the aPVT and specifically its OX2R in mediating a positive feedback relationship with ethanol intake.


Subject(s)
Alcohol Drinking/physiopathology , Orexin Receptors/physiology , Paraventricular Hypothalamic Nucleus/physiology , Alcohol Drinking/prevention & control , Animals , Central Nervous System Depressants/pharmacology , Ethanol/pharmacology , Feedback, Psychological/physiology , Hypothalamus/metabolism , Isoquinolines/pharmacology , Male , Neurons/metabolism , Orexin Receptor Antagonists/pharmacology , Orexin Receptors/drug effects , Paraventricular Hypothalamic Nucleus/drug effects , Proto-Oncogene Proteins c-fos/metabolism , Pyridines/pharmacology , Rats, Long-Evans , Reinforcement Schedule , Sucrose/pharmacology , Sweetening Agents/pharmacology , Up-Regulation/drug effects
13.
J Neurochem ; 131(4): 509-20, 2014 Nov.
Article in English | MEDLINE | ID: mdl-25039297

ABSTRACT

Neuroinflammation is a feedback mechanism against infection, with recent studies suggesting a neuromodulatory role. The chemokine, (C-C motif) ligand 2 (CCL2), and its receptor, (C-C motif) receptor type 2 (CCR2), affect neuromodulation and migration in response to damage. Although CCL2 co-localizes with neuropeptides in the hypothalamus that control voluntary behavior, the function of CCL2/CCR2 is unknown. This led us to consider the possibility that CCL2 acting through CCR2, under natural conditions, may affect the migration and peptide levels of hypothalamic neurons that control voluntary behavior. This study used primary embryonic hypothalamic neurons to examine the effect of CCL2 on migratory behavior and on levels of the peptides, enkephalin (ENK) and galanin. Treatment with CCL2 led to a significant, dose-dependent increase in the number of migrated neurons and an increase in the velocity and distance traveled. CCL2 also significantly increased the number of ENK-expressing and CCR2/ENK co-expressing neurons and the percentage of neurons that contain higher levels of ENK. Lastly, CCL2 produced a dose-dependent increase in expression of ENK and galanin. These results provide evidence for a stimulatory effect of CCL2 on embryonic hypothalamic neurons involving changes in migratory behavior, expression, and synthesis of neuropeptides that function in controlling behavior. Our results demonstrate that the chemokine, CCL2, functions through its receptor, CCR2, to stimulate the migration and expression of the orexigenic peptides, enkephalin (ENK) and galanin (GAL), in developing embryonic hypothalamic neurons that are important for controlling ingestive behavior. This evidence reveals broad effects of CCL2 in the developing hypothalamus, showing this chemokine system to be tightly linked to the hypothalamic peptide neurons.


Subject(s)
Cell Movement/drug effects , Chemokine CCL2/pharmacology , Hypothalamus/cytology , Neurons/metabolism , Neuropeptides/metabolism , Receptors, CCR2/metabolism , Analysis of Variance , Animals , Cell Movement/physiology , Cells, Cultured , Chemokine CCL2/metabolism , Dose-Response Relationship, Drug , Embryo, Mammalian , Enkephalins/metabolism , Female , Galanin/metabolism , Neurons/drug effects , Phosphopyruvate Hydratase/metabolism , Pregnancy , RNA, Messenger/metabolism , Rats , Rats, Sprague-Dawley
14.
Alcohol Clin Exp Res ; 38(3): 777-86, 2014 Mar.
Article in English | MEDLINE | ID: mdl-24236888

ABSTRACT

BACKGROUND: The neurotransmitter dopamine (DA), acting in various mesolimbic brain regions, is well known for its role in promoting motivated behaviors, including ethanol (EtOH) drinking. Indirect evidence, however, suggests that DA in the perifornical lateral hypothalamus (PF/LH) has differential effects on EtOH consumption, depending on whether it acts on the DA 1 (D1) or DA 2 (D2) receptor subtype, and that these effects are mediated in part by local peptide systems, such as orexin/hypocretin (OX) and melanin-concentrating hormone (MCH), known to stimulate the consumption of EtOH. METHODS: The present study in brain-cannulated Sprague-Dawley rats measured the effects of dopaminergic compounds in the PF/LH on drinking behavior in animals trained to consume 7% EtOH and also on local peptide mRNA expression using digoxigenin-labeled in situ hybridization in EtOH-naïve animals. RESULTS: Experiments 1 and 2 showed that the D1 agonist SKF81297 (10.8 nmol/side) in the PF/LH significantly increased food intake, while tending to increase EtOH intake, and the D1 antagonist SCH23390 significantly decreased EtOH intake without affecting food intake. In contrast, the D2 agonist quinelorane (6.2 nmol/side) in the PF/LH significantly reduced EtOH consumption, while the D2 antagonist sulpiride increased it. Experiments 3 and 4 revealed differential effects of PF/LH injection of the DA agonists on local OX mRNA, which was increased by the D1 agonist and decreased by the D2 agonist. These DA agonists had no impact on MCH expression. CONCLUSIONS: These results support a stimulatory role of the PF/LH D1 receptor in promoting the consumption of both EtOH and food, in contrast to a suppressive effect of the D2 receptor on EtOH drinking. They further suggest that these receptors affect consumption, in part, through local OX-expressing neurons. These findings provide new evidence for the function of PF/LH DA receptor subtypes in controlling EtOH and food intake.


Subject(s)
Alcohol Drinking/metabolism , Eating/physiology , Hypothalamus/metabolism , Receptors, Dopamine D1/metabolism , Receptors, Dopamine D2/metabolism , Animals , Hypothalamic Hormones/metabolism , In Situ Hybridization , Intracellular Signaling Peptides and Proteins/metabolism , Male , Melanins/metabolism , Neuropeptides/metabolism , Orexin Receptors/metabolism , Orexins , Pituitary Hormones/metabolism , Rats , Rats, Sprague-Dawley , Receptors, Dopamine D1/agonists , Receptors, Dopamine D1/antagonists & inhibitors , Receptors, Dopamine D2/agonists
15.
PLoS One ; 8(10): e77668, 2013.
Article in English | MEDLINE | ID: mdl-24147051

ABSTRACT

Gestational exposure to a high-fat diet (HFD) stimulates the differentiation of orexigenic peptide-expressing neurons in the hypothalamus of offspring. To examine possible mechanisms that mediate this phenomenon, this study investigated the transcriptional factor, transcription enhancer factor-1 (TEF), and co-activator, Yes-associated protein (YAP), which when inactivated stimulate neuronal differentiation. In rat embryos and postnatal offspring prenatally exposed to a HFD compared to chow, changes in hypothalamic TEF and YAP and their relationship to the orexigenic peptide, enkephalin (ENK), were measured. The HFD offspring at postnatal day 15 (P15) exhibited in the hypothalamic paraventricular nucleus a significant reduction in YAP mRNA and protein, and increased levels of inactive and total TEF protein, with no change in mRNA. Similarly, HFD-exposed embryos at embryonic day 19 (E19) showed in whole hypothalamus significantly decreased levels of YAP mRNA and protein and TEF mRNA, and increased levels of inactive TEF protein, suggesting that HFD inactivates TEF and YAP. This was accompanied by increased density and fluorescence intensity of ENK neurons. A close relationship between TEF and ENK was suggested by the finding that TEF co-localizes with this peptide in hypothalamic neurons and HFD reduced the density of TEF/ENK co-labeled neurons, even while the number and fluorescence intensity of single-labeled TEF neurons were increased. Increased YAP inactivity by HFD was further evidenced by a decrease in number and fluorescence intensity of YAP-containing neurons, although the density of YAP/ENK co-labeled neurons was unaltered. Genetic knockdown of TEF or YAP stimulated ENK expression in hypothalamic neurons, supporting a close relationship between these transcription factors and neuropeptide. These findings suggest that prenatal HFD exposure inactivates both hypothalamic TEF and YAP, by either decreasing their levels or increasing their inactive form, and that this contributes to the stimulatory effect of HFD on ENK expression and possibly the differentiation of ENK-expressing neurons.


Subject(s)
Apoptosis Regulatory Proteins/metabolism , Basic-Leucine Zipper Transcription Factors/metabolism , Dietary Fats/adverse effects , Hypothalamus/cytology , Hypothalamus/metabolism , Neurons/cytology , Transcription Factors/metabolism , Animals , Apoptosis Regulatory Proteins/genetics , Basic-Leucine Zipper Transcription Factors/genetics , Blotting, Western , Cell Differentiation/physiology , Female , Fluorescent Antibody Technique , Neurons/metabolism , Polymerase Chain Reaction , Pregnancy , RNA, Messenger/genetics , RNA, Small Interfering/genetics , Rats , YAP-Signaling Proteins
16.
J Neurosci ; 33(34): 13600-11, 2013 Aug 21.
Article in English | MEDLINE | ID: mdl-23966683

ABSTRACT

Animal and clinical studies show that gestational exposure to nicotine increases the propensity of offspring to consume nicotine, but the precise mechanism mediating this behavioral phenomenon is unclear. The present study in Sprague Dawley rats examined the possibility that the orexigenic peptide systems, enkephalin (ENK) and orexin (OX), which are stimulated by nicotine in adult animals and promote consummatory behavior, may be similarly responsive to nicotine's stimulatory effect in utero while having long-term behavioral consequences. The results demonstrated that nicotine exposure during gestation at low doses (0.75 or 1.5 mg/kg/d) significantly increased mRNA levels and density of neurons that express ENK in the hypothalamic paraventricular nucleus and central nucleus of the amygdala, OX, and another orexigenic peptide, melanin-concentrating hormone, in the perifornical lateral hypothalamus in preweanling offspring. These effects persisted in the absence of nicotine, at least until puberty. Colabeling of the cell proliferation marker BrdU with the neuronal marker NeuN and peptides revealed a marked stimulatory effect of prenatal nicotine on neurogenesis, but not gliogenesis, and also on the number of newly generated neurons expressing ENK, OX, or melanin-concentrating hormone. During adolescence, offspring also exhibited significant behavioral changes, increased consumption of nicotine and other substances of abuse, ethanol and a fat-rich diet, with no changes in chow and water intake or body weight. These findings reveal a marked sensitivity during gestation of the orexigenic peptide neurons to low nicotine doses that may increase the offspring's propensity to overconsume substances of abuse during adolescence.


Subject(s)
Amygdala/cytology , Gene Expression Regulation, Developmental/drug effects , Hypothalamus/cytology , Intracellular Signaling Peptides and Proteins/metabolism , Neurogenesis/drug effects , Neuropeptides/metabolism , Nicotine/pharmacology , Nicotinic Agonists/pharmacology , Prenatal Exposure Delayed Effects/chemically induced , Age Factors , Amygdala/drug effects , Amygdala/growth & development , Amygdala/metabolism , Animals , Animals, Newborn , Bromodeoxyuridine/metabolism , Enkephalins/genetics , Enkephalins/metabolism , Female , Gene Expression Regulation, Developmental/physiology , Hypothalamic Hormones/genetics , Hypothalamic Hormones/metabolism , Hypothalamus/drug effects , Hypothalamus/growth & development , Hypothalamus/metabolism , In Situ Nick-End Labeling , Intracellular Signaling Peptides and Proteins/genetics , Melanins/genetics , Melanins/metabolism , Neurons/drug effects , Neurons/metabolism , Neuropeptides/genetics , Orexins , Phosphopyruvate Hydratase , Pituitary Hormones/genetics , Pituitary Hormones/metabolism , Pregnancy , Prenatal Exposure Delayed Effects/metabolism , Prenatal Exposure Delayed Effects/pathology , RNA, Messenger/metabolism , Rats , Rats, Sprague-Dawley
17.
Alcohol ; 47(1): 31-8, 2013 Feb.
Article in English | MEDLINE | ID: mdl-23199698

ABSTRACT

The opioid system is known to enhance motivated behaviors, including ethanol drinking and food ingestion, by acting in various reward-related brain regions, such as the nucleus accumbens, ventral tegmental area and medial hypothalamus. There is indirect evidence, however, suggesting that opioid peptides may act differently in the perifornical lateral hypothalamus (PF/LH), causing a suppression of consummatory behavior. Using brain-cannulated Sprague-Dawley rats trained to voluntarily drink 7% ethanol, the present study tested the hypothesis that opioids in the PF/LH can reduce the consumption of ethanol, with animals receiving PF/LH injections of the δ-opioid receptor agonist D-Ala2-met-enkephalinamide (DALA), the µ-receptor agonist [D-Ala2, N-MePhe4, Gly-ol]-enkephalin (DAMGO), the κ-receptor agonist (±)-trans-U-50,488 methanesulfonate (U-50,488H), or the general opioid antagonist methylated naloxone (m-naloxone). The consumption of ethanol, lab chow, and water was monitored for 4 h after injection. The results showed that the three opioid receptor agonists injected into the PF/LH specifically and significantly reduced ethanol intake, while causing little change in chow or water intake, and the opposite effect, enhanced ethanol intake, was observed with the opioid antagonist. Of the three opioid agonists, the δ-agonist appears to produce the most consistent and long-lasting suppression of consumption. This effect was not observed with injections 2 mm dorsal to this area, focusing attention on the PF/LH as the main site of action. These results suggest that the opioid peptides have a specific role in the PF/LH of reducing ethanol drinking, which is distinct from their more commonly observed appetitive actions in other brain areas. The additional finding, that m-naloxone in the PF/LH stimulates ethanol intake in contrast to its generally suppressive effect in other regions, focuses attention on this hypothalamic area and its distinctive role in contributing to the variable effects sometimes observed with opioid antagonist therapy for alcoholism.


Subject(s)
Alcohol Drinking/drug therapy , Analgesics, Opioid/pharmacology , Hypothalamus/drug effects , 3,4-Dichloro-N-methyl-N-(2-(1-pyrrolidinyl)-cyclohexyl)-benzeneacetamide, (trans)-Isomer/pharmacology , Animals , Enkephalin, Ala(2)-MePhe(4)-Gly(5)-/pharmacology , Enkephalin, Methionine/analogs & derivatives , Enkephalin, Methionine/pharmacology , Naloxone/analogs & derivatives , Naloxone/pharmacology , Narcotic Antagonists/pharmacology , Rats , Rats, Sprague-Dawley , Receptors, Opioid/agonists
18.
Am J Physiol Endocrinol Metab ; 303(3): E432-41, 2012 Aug 01.
Article in English | MEDLINE | ID: mdl-22693204

ABSTRACT

Maternal consumption of a fat-rich diet during pregnancy, which causes later overeating and weight gain in offspring, has been shown to stimulate neurogenesis and increase hypothalamic expression of orexigenic neuropeptides in these postnatal offspring. The studies here, using an in vitro model that mimics in vivo characteristics after prenatal high-fat diet (HFD) exposure, investigate whether these same peptide changes occur in embryos and if they are specific to neurons. Isolated hypothalamic neurons were compared with whole hypothalamus from embryonic day 19 (E19) embryos that were prenatally exposed to HFD and were both found to show similar increases in mRNA expression of enkephalin (ENK) and neuropeptide Y (NPY) compared with that of chow-exposed embryos, with no change in melanin-concentrating hormone, orexin, or galanin. Further examination using immunofluorescence cytochemistry revealed an increase in the number of cells expressing ENK and NPY. By plotting the fluorescence intensity of each cell as a probability density function, three different populations of neurons with low, medium, or high levels of ENK or NPY were found in both HFD and chow groups. The prenatal HFD shifted the density of neurons from the population containing low peptide levels to the population containing high peptide levels. This study indicates that neuronal culture is a useful in vitro system for studying diet effects on neuronal development and shows that prenatal HFD exposure alters the population of hypothalamic neurons containing ENK and NPY in the embryo. These changes may contribute to the increase in HFD intake and body weight observed in offspring.


Subject(s)
Dietary Fats/pharmacology , Hypothalamus/drug effects , Hypothalamus/embryology , Neurons/drug effects , Prenatal Nutritional Physiological Phenomena/drug effects , Animals , Animals, Newborn , Cells, Cultured , Diet, High-Fat , Embryo, Mammalian , Female , Gestational Age , Hypothalamus/growth & development , Neurons/physiology , Pregnancy , Prenatal Exposure Delayed Effects/chemically induced , Prenatal Exposure Delayed Effects/physiopathology , Prenatal Exposure Delayed Effects/psychology , Prenatal Nutritional Physiological Phenomena/physiology , Rats , Rats, Sprague-Dawley
19.
ILAR J ; 53(1): 35-58, 2012.
Article in English | MEDLINE | ID: mdl-23520598

ABSTRACT

Consummatory behavior is driven by both caloric and emotional need, and a wide variety of animal models have been useful in research on the systems that drive consumption of food and drugs. Models have included selective breeding for a specific trait, manipulation of gene expression, forced or voluntary exposure to a substance, and identification of biomarkers that predict which animals are prone to overconsuming specific substances. This research has elucidated numerous brain areas and neurochemicals that drive consummatory behavior. Although energy homeostasis is primarily mediated by the hypothalamus, reinforcement is more strongly mediated by nuclei outside the hypothalamus, in mesocorticolimbic regions. Orexigenic neurochemicals that control food intake can provide a general signal for promoting caloric intake or a more specific signal for stimulating consumption of a particular macronutrient, fat, carbohydrate, or protein. The neurochemicals involved in controlling fat ingestion--galanin, enkephalin, orexin, melanin-concentrating hormone, and the endocannabinoids--show positive feedback with this macronutrient, as these peptides both increase fat intake and are further stimulated by its intake. This positive association offers some explanation for why foods high in fat are so often overconsumed. Consumption of ethanol, a drug of abuse that also contains calories, is similarly driven by the neurochemical systems involved in fat intake, according to evidence that closely relates fat and ethanol consumption. Further understanding of the systems involved in consummatory behavior will enable the development of effective therapies for the treatment of both overeating and drug abuse.


Subject(s)
Consummatory Behavior/physiology , Hyperphagia/physiopathology , Neurobiology/methods , Animals , Hypothalamus/metabolism , Mice , Rats , Substance-Related Disorders
20.
Regul Pept ; 173(1-3): 13-20, 2012 Jan 10.
Article in English | MEDLINE | ID: mdl-21903140

ABSTRACT

While a high-fat diet when compared to low-fat diet is known to produce overeating and health complications, less is known about the effects produced by fat-rich diets differing in their specific composition of fat. This study examined the effects of a high-fat diet containing relatively high levels of saturated compared to unsaturated fatty acids (HiSat) to a high-fat diet with higher levels of unsaturated fatty acids (USat). A HiSat compared to USat meal caused rats to consume more calories in a subsequent chow test meal. The HiSat meal also increased circulating levels of triglycerides (TG) and expression of the orexigenic peptides, galanin (GAL) in the hypothalamic paraventricular nucleus (PVN) and orexin (OX) in the perifornical lateral hypothalamus (PFLH). A similar increase in TG levels and PVN GAL and PFLH OX was also seen in rats given chronic access to the HiSat compared to USat diet, while neuropeptide Y (NPY) and agouti-related protein (AgRP) in the arcuate nucleus showed decreased expression. The importance of TG in producing these changes was supported by the finding that the TG-lowering medication gemfibrozil as compared to vehicle, when peripherally administered before consumption of a HiSat meal, significantly decreased the expression of OX, while increasing the expression of NPY and AgRP. These findings substantiate the importance of the fat composition in a diet, indicating that those rich in saturated compared to unsaturated fatty acids may promote overeating by increasing circulating lipids and specific hypothalamic peptides, GAL and OX, known to preferentially stimulate the consumption of a fat-rich diet.


Subject(s)
Dietary Fats/pharmacology , Eating/drug effects , Fatty Acids/pharmacology , Hypothalamic Hormones/metabolism , Triglycerides/blood , Animals , Appetite , Diet, High-Fat , Female , Gemfibrozil/pharmacology , Gene Expression/drug effects , Hypolipidemic Agents/pharmacology , Hypothalamic Hormones/genetics , Hypothalamus/metabolism , Male , Rats , Rats, Sprague-Dawley
SELECTION OF CITATIONS
SEARCH DETAIL