Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters

Complementary Medicines
Database
Language
Publication year range
1.
Nat Nanotechnol ; 16(10): 1150-1160, 2021 10.
Article in English | MEDLINE | ID: mdl-34354264

ABSTRACT

Although nanomaterials have shown promising biomedical application potential, incomplete understanding of their molecular interactions with biological systems prevents their inclusion into mainstream clinical applications. Here we show that black phosphorus (BP) nanomaterials directly affect the cell cycle's centrosome machinery. BP destabilizes mitotic centrosomes by attenuating the cohesion of pericentriolar material and consequently leads to centrosome fragmentation within mitosis. As a result, BP-treated cells exhibit multipolar spindles and mitotic delay, and ultimately undergo apoptosis. Mechanistically, BP compromises centrosome integrity by deactivating the centrosome kinase polo-like kinase 1 (PLK1). BP directly binds to PLK1, inducing its aggregation, decreasing its cytosolic mobility and eventually restricting its recruitment to centrosomes for activation. With this mechanism, BP nanomaterials show great anticancer potential in tumour xenografted mice. Together, our study reveals a molecular mechanism for the tumoricidal properties of BP and proposes a direction for biomedical application of nanomaterials by exploring their intrinsic bioactivities.


Subject(s)
Cell Cycle Proteins/genetics , Centrosome/drug effects , Nanostructures/chemistry , Neoplasms/drug therapy , Phosphorus/pharmacology , Protein Serine-Threonine Kinases/genetics , Proto-Oncogene Proteins/genetics , Animals , Apoptosis/drug effects , Cell Cycle Proteins/antagonists & inhibitors , HeLa Cells , Heterografts , Humans , Mice , Mitosis/drug effects , Neoplasms/genetics , Neoplasms/pathology , Phosphorus/chemistry , Protein Serine-Threonine Kinases/antagonists & inhibitors , Proto-Oncogene Proteins/antagonists & inhibitors , Polo-Like Kinase 1
2.
Nano Today ; 392021 Aug.
Article in English | MEDLINE | ID: mdl-36937379

ABSTRACT

Nanotoxicology and nanomedicine are two sub-disciplines of nanotechnology focusing on the phenomena, mechanisms, and engineering at the nano-bio interface. For the better part of the past three decades, these two disciplines have been largely developing independently of each other. Yet recent breakthroughs in microbiome research and the current COVID-19 pandemic demonstrate that holistic approaches are crucial for solving grand challenges in global health. Here we show the Yin and Yang relationship between the two fields by highlighting their shared goals of making safer nanomaterials, improved cellular and organism models, as well as advanced methodologies. We focus on the transferable knowledge between the two fields as nanotoxicological research is moving from pristine to functional nanomaterials, while inorganic nanomaterials - the main subjects of nanotoxicology - have become an emerging source for the development of nanomedicines. We call for a close partnership between the two fields in the new decade, to harness the full potential of nanotechnology for benefiting human health and environmental safety.

3.
Nanoscale ; 12(1): 43-57, 2020 Jan 07.
Article in English | MEDLINE | ID: mdl-31799539

ABSTRACT

Quantum dots (QDs) originating from two-dimensional (2D) sheets of graphitic carbon nitride (g-C3N4), graphene, hexagonal boron nitride (h-BN), monoatomic buckled crystals (phosphorene), germanene, silicene and transition metal dichalcogenides (TMDCs) are emerging zero-dimensional materials. These QDs possess diverse optical properties, are chemically stable, have surprisingly excellent biocompatibility and are relatively amenable to surface modifications. It is therefore not difficult to see that these QDs have potential in a variety of bioapplications, including biosensing, bioimaging and anticancer and antimicrobial therapy. In this review, we briefly summarize the recent progress of these exciting QD based nanoagents and strategies for phototherapy. In addition, we will discuss about the current limitations, challenges and future prospects of QDs in biomedical applications.


Subject(s)
Quantum Dots/chemistry , Animals , Biocompatible Materials/chemistry , Biocompatible Materials/therapeutic use , Graphite/chemistry , Humans , Nanostructures/chemistry , Neoplasms/pathology , Neoplasms/therapy , Nitrogen Compounds/chemistry , Phosphorus/chemistry , Phototherapy , Surface Properties
4.
Chem Soc Rev ; 45(15): 4199-225, 2016 Aug 07.
Article in English | MEDLINE | ID: mdl-27119124

ABSTRACT

Since many bionanotechnologies are targeted at cells, understanding how and where their interactions occur and the subsequent results of these interactions is important. Changing the intrinsic properties of DNA nanostructures and linking them with interactions presents a holistic and powerful strategy for understanding dual nanostructure-biological systems. With the recent advances in DNA nanotechnology, DNA nanostructures present a great opportunity to understand the often convoluted mass of information pertaining to nanoparticle-biological interactions due to the more precise control over their chemistry, sizes, and shapes. Coupling just some of these designs with an understanding of biological processes is both a challenge and a source of opportunities. Despite continuous advances in the field of DNA nanotechnology, the intracellular fate of DNA nanostructures has remained unclear and controversial. Because understanding its cellular processing and destiny is a necessary prelude to any rational design of exciting and innovative bionanotechnology, in this review, we will discuss and provide a comprehensive picture relevant to the intracellular processing and the fate of various DNA nanostructures which have been remained elusive for some time. We will also link the unique capabilities of DNA to some novel ideas for developing next-generation bionanotechnologies.


Subject(s)
DNA , Endocytosis , Nanostructures , Nanotechnology , Animals , Caenorhabditis elegans , Cell Line , DNA/chemical synthesis , DNA/chemistry , DNA/ultrastructure , Drug Delivery Systems , History, 20th Century , History, 21st Century , Humans , Mice , Nanostructures/chemistry , Nanostructures/ultrastructure , Nanotechnology/history , Nanotechnology/methods , Nucleic Acid Conformation
5.
Biochem Biophys Res Commun ; 362(1): 17-24, 2007 Oct 12.
Article in English | MEDLINE | ID: mdl-17692823

ABSTRACT

This study investigated the effects of various components [vitamin D3 (VD3), beta-glycerophosphate (BGP), and ascorbic acid (AA)] on the potential of human adipose-derived progenitor cells (ADPCs) to transdifferentiate into osteoblast-like cells. ADPCs were induced under four different supplement groups: (1) VD3+BGP+AA, (2) VD3 alone, (3) BGP+AA, and (4) no VD3, BGP or AA. Mineralization studies and presence of bone matrix-related proteins by immunostaining showed that the Group 1 ADPCs showed their ability to undergo osteoblastic differentiation. Further evaluation was made by estimation of levels of RUNX-2 and TAZ genes. Group 1 ADPCs showed the consistent expression of RUNX-2 and TAZ levels over the study period of 28days. The study showed good correlation among various parameters evaluated to conclude that ADPCs could be an alternative source for generating osteoblast-like cells.


Subject(s)
Adipose Tissue/pathology , Ascorbic Acid/metabolism , Gene Expression Regulation , Glycerophosphates/metabolism , Stem Cells/metabolism , Adipose Tissue/cytology , Adult , Anthraquinones/pharmacology , Bone and Bones/metabolism , Cell Differentiation , Cholecalciferol/metabolism , DNA Primers/chemistry , Female , Humans , Middle Aged , Osteoblasts/metabolism , Osteocalcin/metabolism , Osteonectin/metabolism , Osteopontin/metabolism , Stem Cells/cytology
SELECTION OF CITATIONS
SEARCH DETAIL