Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Arthritis Res Ther ; 25(1): 164, 2023 09 07.
Article in English | MEDLINE | ID: mdl-37679816

ABSTRACT

BACKGROUND: Low urine pH, which may be mediated by metabolic syndrome (MetS), is common in gout. Tart cherries are shown to improve MetS symptoms and possess anti-inflammatory properties. However, the efficacy of tart cherry supplements on urine pH has yet to be studied. OBJECTIVES: This study aimed to investigate the efficacy and safety of tart cherry supplementary citrate (TaCCi) mixture on urine pH, serum urate (sUA), C-reactive protein (CRP), and gout flares in gout patients initiating urate-lowering therapy (ULT), in comparison to citrate mixture and sodium bicarbonate. METHODS: A prospective, randomized (1:1:1), open-label, parallel-controlled trial was conducted among 282 men with gout and fasting urine pH ≤ 6, who were initiating ULT with febuxostat (initially 20 mg daily, escalating to 40 mg daily if serum urate ≥ 360 µmol/L). Participants were randomized to groups taking either sodium bicarbonate, citrate mixture, or TaCCi mixture. All participants were followed every 4 weeks until week 12. Urine pH and sUA were co-primary outcomes, with various biochemical and clinical secondary endpoints. RESULTS: Urine pH increased to a similar extent in all three groups. SUA levels declined in all three groups as well, with no significant differences observed between the groups. At week 12, the TaCCi mixture group exhibited a greater reduction in the urine albumin/creatinine ratio (UACR) compared to the other two groups (p < 0.05). Participants taking TaCCi mixture or citrate mixture experienced fewer gout flares than those in the sodium bicarbonate group over the study period (p < 0.05). Additionally, the TaCCi mixture group had a lower CRP level at week 12 relative to the other two groups (p < 0.01). Adverse events were similar across all three groups. CONCLUSION: The TaCCi mixture had similar efficacy and safety on urine alkalization and sUA-lowering as the citrate mixture and sodium bicarbonate in patients with gout. However, the TaCCi mixture resulted in greater improvements in UACR and CRP, which suggests that tart cherry supplements may provide additional benefits for renal protection and reduce inflammation in gout, particularly when starting ULT. TRIAL REGISTRATION: This project was registered in ChiCTR ( www.chictr.org.cn ), with the registration number: ChiCTR2100050749.


Subject(s)
Gout , Metabolic Syndrome , Prunus avium , Male , Humans , Citric Acid , Prospective Studies , Sodium Bicarbonate/therapeutic use , Uric Acid , Citrates , Gout/drug therapy , C-Reactive Protein
2.
Eur J Nutr ; 60(4): 2217-2230, 2021 Jun.
Article in English | MEDLINE | ID: mdl-33104864

ABSTRACT

PURPOSE: Inulin is a type of fermentable dietary fiber, which is non-digestible, and can improve metabolic function by modulating intestinal microbiota. This study aimed to evaluate the role of inulin in hyperuricemia and microbial composition of the gut microbiota in a mouse model of hyperuricemia established through knockout of Uox (urate oxidase) gene. METHODS: KO (Uox-knockout) and WT (wild-type) mice were given inulin or saline by gavage for 7 weeks. The effect of inulin to combat hyperuricemia was determined by assessing the changes in serum UA (uric acid) levels, inflammatory parameters, epithelial barrier integrity, fecal microbiota alterations, and SCFA (short-chain fatty acid) concentrations in KO mice. RESULTS: Inulin supplementation can effectively alleviate hyperuricemia, increase the expressions of ABCG2 in intestine, and downregulate expression and activity of hepatic XOD (xanthine oxidase) in KO mice. It was revealed that the levels of inflammatory cytokines and the LPS (lipopolysaccharide) were remarkably higher in the KO group than those in the WT group, indicating systemic inflammation of hyperuricemic mice, but inulin treatment ameliorated inflammation in KO mice. Besides, inulin treatment repaired the intestinal epithelial barrier as evidenced by increased levels of intestinal TJ (tight junction) proteins [ZO-1 (zonula occludens-1) and occluding] in KO mice. Moreover, serum levels of uremic toxins, including IS (indoxyl sulfate) and PCS (p-cresol sulfate), were reduced in inulin-treated KO mice. Further investigation unveiled that inulin supplementation enhanced microbial diversity and raised the relative abundance of beneficial bacteria, involving SCFAs-producing bacteria (e.g., Akkermansia and Ruminococcus). Additionally, inulin treatment increased the production of gut microbiota-derived SCFAs (acetate, propionate and butyrate concentrations) in KO mice, which was positively correlated with the effectiveness of hyperuricemia relief. CONCLUSIONS: Our findings showed that inulin may be a promising therapeutic candidate for the treatment of hyperuricemia. Moreover, alleviation of hyperuricemia by inulin supplementation was, at least, partially conciliated by modulation of gut microbiota and its metabolites.


Subject(s)
Gastrointestinal Microbiome , Hyperuricemia , Animals , Dietary Supplements , Hyperuricemia/drug therapy , Inulin , Mice , Mice, Knockout
3.
Cell ; 182(3): 713-721.e9, 2020 08 06.
Article in English | MEDLINE | ID: mdl-32778225

ABSTRACT

The coronavirus disease 2019 (COVID-19) pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) threatens global public health. The development of a vaccine is urgently needed for the prevention and control of COVID-19. Here, we report the pilot-scale production of an inactivated SARS-CoV-2 vaccine candidate (BBIBP-CorV) that induces high levels of neutralizing antibodies titers in mice, rats, guinea pigs, rabbits, and nonhuman primates (cynomolgus monkeys and rhesus macaques) to provide protection against SARS-CoV-2. Two-dose immunizations using 2 µg/dose of BBIBP-CorV provided highly efficient protection against SARS-CoV-2 intratracheal challenge in rhesus macaques, without detectable antibody-dependent enhancement of infection. In addition, BBIBP-CorV exhibits efficient productivity and good genetic stability for vaccine manufacture. These results support the further evaluation of BBIBP-CorV in a clinical trial.


Subject(s)
Betacoronavirus/immunology , Coronavirus Infections/prevention & control , Drug Evaluation, Preclinical/methods , Pandemics/prevention & control , Pneumonia, Viral/prevention & control , Vaccines, Inactivated/therapeutic use , Viral Vaccines/therapeutic use , Animals , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , Betacoronavirus/genetics , COVID-19 , COVID-19 Vaccines , Chlorocebus aethiops , Coronavirus Infections/virology , Disease Models, Animal , Female , Guinea Pigs , Immunogenicity, Vaccine , Macaca fascicularis , Macaca mulatta , Male , Mice , Mice, Inbred BALB C , Phylogeny , Pneumonia, Viral/virology , Rabbits , Rats , Rats, Wistar , SARS-CoV-2 , Vaccines, Inactivated/adverse effects , Vero Cells , Viral Vaccines/adverse effects
SELECTION OF CITATIONS
SEARCH DETAIL