Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 47
Filter
1.
Anim Biotechnol ; 35(1): 2335340, 2024 Nov.
Article in English | MEDLINE | ID: mdl-38587818

ABSTRACT

This study explored the effects of different vitamin B5 (VB5) levels on intestinal growth and function of weaned piglets. Twenty-one piglets (7.20 ± 1.11 kg) were included in a 28-day feeding trial with three treatments, including 0 mg/kg (L-VB5), 10 mg/kg (Control) and 50 mg/kg (H-VB5) of VB5 supplement. The results showed that: Large intestine weight/body weight was the highest in H-VB5 group, Control and H-VB5 groups had significantly higher villus height and villus height/crypt depth than the L-VB5 in the ileum (p < .05). Goblet cells (ileal crypt) and endocrine cells (ileal villus) significantly increased in Control and H-VB5 (p < .05). The H-VB5 group exhibited significantly higher levels of ki67 and crypt depth in the cecum and colon, colonic goblet cells and endocrine cells were both rising considerably (p < .05). Isobutyric acid and isovaleric acid were significantly reduced in the H-VB5 group (p < .05), and there was a decreasing trend in butyric acid (p = .073). At the genus level, the relative abundance of harmful bacteria such as Clostridium_Sensu_Structo_1 Strecto_1, Terrisporbacter and Streptococcus decreased significantly and the relative abundance of beneficial bacteria Turicibacter increased significantly in H-VB5 group (p < .05). Overall, the addition of 50 mg/kg VB5 primarily enhanced the morphological structure, cell proliferation and differentiation of the ileum, cecum and colon. It also had a significant impact on the gut microbiota and short-chain fatty acids.


Subject(s)
Cecum , Pantothenic Acid , Animals , Butyric Acid , Cell Differentiation , Dietary Supplements , Swine
2.
Sci China Life Sci ; 66(9): 1994-2005, 2023 09.
Article in English | MEDLINE | ID: mdl-37300752

ABSTRACT

With gradual ban on the use of antibiotics, the deficiency and excessive use of trace elements in intestinal health is gaining attention. In mammals, trace elements are essential for the development of the immune system, specifically T-cell proliferation, and differentiation. However, there remain significant gaps in our understanding of the effects of certain trace elements on T-cell immune phenotypes and functions in pigs. In this review, we summarize the specificity, development, subpopulations, and responses to pathogens of porcine T cells and the effects of functional trace elements (e.g., iron, copper, zinc, and selenium) on intestinal T-cell immunity during early-life health in pigs. Furthermore, we discuss the current trends of research on the crosstalk mechanisms between trace elements and T-cell immunity. The present review expands our knowledge of the association between trace elements and T-cell immunity and provides an opportunity to utilize the metabolism of trace elements as a target to treat various diseases.


Subject(s)
Selenium , Trace Elements , Swine , Animals , T-Lymphocytes , Zinc , Copper , Mammals
3.
Sci China Life Sci ; 66(9): 2070-2085, 2023 09.
Article in English | MEDLINE | ID: mdl-37233872

ABSTRACT

This study aimed to investigate the mechanism of iron on intestinal epithelium development of suckling piglets. Compared with newborn piglets, 7-day-old and 21-day-old piglets showed changes in the morphology of the jejunum, increased proliferation, differentiated epithelial cells, and expanded enteroids. Intestinal epithelium maturation markers and iron metabolism genes were significantly changed. These results suggest that lactation is a critical stage in intestinal epithelial development, accompanied by changes in iron metabolism. In addition, deferoxamine (DFO) treatment inhibited the activity of intestinal organoids at passage 4 (P4) of 0-day-old piglets, but no significant difference was observed in epithelial maturation markers at passage 1 (P1) and P4, and only argininosuccinate synthetase 1 (Ass1) and ß-galactosidase (Gleb) were up-regulated at passage 7 (P7). These results in vitro show that iron deficiency may not directly affect intestinal epithelium development through intestinal stem cells (ISCs). The iron supplementation significantly down-regulated the mRNA expression of interleukin-22 receptor subunit alpha-2 (IL-22RA2) in the jejunum of piglets. Furthermore, the mRNA expression of IL-22 in 7-day-old piglets was significantly higher than that in 0-day-old piglets. Adult epithelial markers were significantly up-regulated in organoids treated with recombinant murine cytokine IL-22. Thus, IL-22 may play a key role in iron-affecting intestinal epithelium development.


Subject(s)
Intestines , Iron , Female , Animals , Swine , Mice , Iron/metabolism , Intestinal Mucosa/metabolism , Epithelium , RNA, Messenger/metabolism
4.
Anim Biotechnol ; 34(6): 1919-1930, 2023 Nov.
Article in English | MEDLINE | ID: mdl-35416756

ABSTRACT

This study aimed to investigate whether lactating Hu sheep's dietary protein levels could generate dynamic effects on the performance of their offspring. Twelve ewes with similar parity were fed iso-energy diets which contained different protein levels (P1: 9.82%, P2: 10.99%) (n = 6), and the corresponding offspring were divided into SP1 and SP2 (n = 12). At 60 days, half of the lambs were harvested for further study: the carcass weight (p = 0.043) and dressing percentage (p = 0.004) in the SP2 group were significantly higher than SP1. The acetic acid (p = 0.007), propionic acid (p = 0.003), butyric acid (p < 0.001) and volatile fatty acids (p < 0.001) in rumen fluid of SP2 were significantly lower than SP1. The expression of MCT2 (p = 0.024), ACSS1 (p = 0.039) and NHE3 (p = 0.006) in the rumen of SP2 was lower than SP1, while the HMGCS1 (p = 0.026), HMGCR (p = 0.024) and Na+/K+-ATPase (p = 0.020) was higher than SP1. The three dominant phyla in the rumen are Bacteroidetes, Proteobacteria and Firmicutes. The membrane transport, amino acid metabolism and carbohydrate metabolism of SP1 were relatively enhanced, the replication and repair function of SP2 was relatively enhanced. To sum up, the increase of dietary protein level significantly increased the carcass weight and dressing percentage of offspring and had significant effects on rumen volatile fatty acids, acetic acid activation and cholesterol synthesis related genes. HIGHLIGHTSIn the early feeding period, the difference in ADG of lambs was mainly caused by the sucking effect.The increase in dietary protein level of ewes significantly increased the carcass weight and dressing percentage of offspring.The dietary protein level of ewes significantly affected the volatile fatty acids (VFAs) and genes related to acetic acid activation and cholesterol synthesis in the rumen of their offspring.The membrane transport, amino acid metabolism and carbohydrate metabolism of the offspring of ewes fed with a low protein diet were relatively enhanced.The replication and repair function of the offspring of ewes fed with a high protein diet was relatively strengthened.


Subject(s)
Lactation , Rumen , Pregnancy , Animals , Sheep , Female , Rumen/metabolism , Diet/veterinary , Fatty Acids, Volatile , Acetates/analysis , Acetates/metabolism , Dietary Proteins/analysis , Dietary Proteins/metabolism , Amino Acids/analysis , Amino Acids/metabolism , Cholesterol/metabolism , Animal Feed/analysis , Milk/chemistry , Dietary Supplements
5.
J Ethnopharmacol ; 305: 116087, 2023 Apr 06.
Article in English | MEDLINE | ID: mdl-36584918

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Inadequate trophoblasts migration and invasion is considered as an initial event resulting in preeclampsia, which is closely related to oxidative stress. Berberine hydrochloride (BBR), extracted from the traditional medicinal plant Coptis chinensis Franch., exerts a diversity of pharmacological effects, and the crude drug has been widely taken by most Chinese women to treat nausea and vomit during pregnancy. But there is no research regarding its effects on trophoblast cell function. AIM OF THE STUDY: This study aimed to investigate the effect of BBR on human-trophoblast-derived cell line (HTR-8/SVneo) migration ability and its mechanism. MATERIALS AND METHODS: Cell viability was detected by CCK-8 assay. The effect of BBR on cells migration function was examined by scratch wound healing assay and transwell migration assay. Intracellular nitric oxide (NO), superoxide (O2-) and peroxynitrite (ONOO-) levels were measured by flow cytometry. The expression levels of inducible NO synthase (iNOS), eNOS, p-eNOS, MnSOD, CuZnSOD, Rac1, NOX1, TLR4, nuclear factor-κB (NF-κB), p-NFκB, pro-inflammatory cytokines (TNF-α, IL-1ß and IL-6) in cells were analyzed by Western blotting. Uric acid sodium salt (UA), the scavenger of ONOO-, PEG-SOD (a specific superoxide scavenger), L-NAME (a NOS inhibitor) and antioxidants (Vit E and DFO) were further used to characterize the pathway of BBR action. RESULTS: 5 µM BBR decreased both the migration distance and the number of migrated cells without affecting cells viability in HTR-8/SVneo cells after 24 h treatment. BBR could increase the level of NO in HTR-8/SVneo cells, and the over-production of NO might be attributable to iNOS, but not eNOS. BBR could increase intracellular O2- levels, and the over-production of O2- is closely related with Rac1 in HTR-8/SVneo cells. The excessive production of NO and O2- further react to form ONOO-, and the increased ONOO- level induced by BBR was blunted by UA. Moreover, UA improved the impaired migration function caused by BBR in HTR-8/SVneo cells. The depressed migration function stimulated by BBR in HTR-8/SVneo cells was diminished by PEG-SOD and L-NAME. Furthermore, BBR increased the expression of IL-6 in HTR-8/SVneo cells, and antioxidants (Vit E and DFO) could decrease the expression of IL-6 and iNOS induced by BBR. CONCLUSIONS: BBR inhibits the cell migration ability through increasing inducible NO synthase and peroxynitrite in HTR-8/SVneo cells, indicating that BBR and traditional Chinese medicines containing a high proportion of BBR should be used with caution in pregnant women.


Subject(s)
Berberine , Female , Humans , Pregnancy , Berberine/pharmacology , Cell Movement , Interleukin-6 , NF-kappa B/metabolism , NG-Nitroarginine Methyl Ester/pharmacology , Nitric Oxide Synthase , Peroxynitrous Acid/pharmacology , Superoxides , Nitric Oxide Synthase Type II
6.
Front Vet Sci ; 9: 870303, 2022.
Article in English | MEDLINE | ID: mdl-35782573

ABSTRACT

The effects of excessive dietary iron intake on the body have been an important topic. The purpose of this study was to investigate the effects of high-dose iron on intestinal damage and regeneration in dextran sodium sulfate (DSS)-induced colitis model mice. A total of 72 8-week-old adult C57BL/6 mice were randomly divided into two dietary treatment groups: the basal diet supplemented with 45 (control) and 450 mg/kg iron (high-iron) from ferrous sulfate. The mice were fed different diets for 2 weeks, and then 2.5% DSS was orally administered to all mice for 7 days. Samples of different tissues were collected on days 0, 3, and 7 post administration (DPA). High-iron treatment significantly decreased the relative weight of the large intestine at 7 DPA but not at 0 DPA or 3 DPA. High dietary iron increased the jejunal villus width at 0 DPA, decreased the villus width and the crypt depth of the jejunum at 3 DPA, and decreased the number of colonic crypts at 7 DPA. Meanwhile, high dietary iron decreased the number of goblet cells in the jejunal villi and the Paneth cells in the jejunal crypts at 0 DPA, increased the number of goblet cells per crypt of the colon at 3 DPA, and the number of Paneth cells in the jejunal crypts, the goblet cells in the colon, the Ki67-positive proliferating cells in the colon, and the Sex-determining region Y-box transcription factor 9+ (SOX9) cells in the jejunum crypts and colon at 7 DPA. The organoid formation rate was increased by high-iron treatments at 3 DPA and 7 DPA. High dietary iron treatment decreased the mRNA level of jejunal jagged canonical Notch ligand 2 (Jag-2) at 0 DPA and bone morphogenetic protein 4 (Bmp4) and neural precursor cell-expressed developmentally downregulated 8 (Nedd8) in the jejunum and colon at 7 DPA, whereas it increased the mRNA expression of the serum/glucocorticoid-regulated kinase 1 (Sgk1) in the colon at 3 DPA. The results suggested that a high dose of iron aggravated intestinal injury but promoted intestinal repair by regulating intestinal epithelial cell renewal and intestinal stem cell activity in adult mice with colitis.

7.
Oxid Med Cell Longev ; 2022: 6316611, 2022.
Article in English | MEDLINE | ID: mdl-35313639

ABSTRACT

Chlorogenic acid (CGA), as one of the richest polyphenol compounds in nature, has broad applications in many fields due to its various biological properties. However, initial data on the effects of dietary CGA on protein synthesis and related basal metabolic activity has rarely been reported. The current study is aimed at (1) determining whether dietary CGA supplementation improves the growth performance and carcass traits, (2) assessing whether dietary CGA alters the free amino acid profile, and (3) verifying whether dietary CGA promotes muscle protein synthesis in finishing pigs. Thirty-two (Large × White × Landrace) finishing barrows with an average initial body weight of 71.89 ± 0.92 kg were randomly allotted to 4 groups and fed diets supplemented with 0, 0.02%, 0.04%, and 0.08% CGA, respectively. The results indicated that, compared with the control group, dietary supplementation with 0.04% CGA slightly stimulated the growth performance of pigs, whereas no significant correlation was noted between the dietary CGA levels and animal growth (P > 0.05). Furthermore, the carcass traits of pigs were improved by 0.04% dietary CGA (P < 0.01). In addition, dietary CGA significantly improved the serum free amino acid profiles of pigs (P < 0.01), while 0.04% dietary CGA promoted more amino acids to translocate to skeletal muscles (P < 0.05). The relative mRNA expression levels of SNAT2 in both longissimus dorsi (LD) and biceps femoris (BF) muscles were augmented in the 0.02% and 0.04% groups (P < 0.05), and the LAT1 mRNA expression in the BF muscle was elevated in the 0.02% group (P < 0.05). We also found that dietary CGA supplementation at the levels of 0.04% or 0.08% promoted the expression of p-Akt and activated the mTOR-S6K1-4EBP1 axis in the LD muscle (P < 0.05). Besides, the MAFbx mRNA abundance in the 0.02% and 0.04% groups was significantly lower (P < 0.05). Our results revealed that dietary supplementation with CGA of 0.04% improved the free amino acid profile and enhanced muscle protein biosynthesis in the LD muscle in finishing pigs.


Subject(s)
Amino Acids , Lonicera , Amino Acids/metabolism , Animal Feed/analysis , Animals , Chlorogenic Acid/pharmacology , Dietary Supplements , Lonicera/metabolism , Muscle Proteins/metabolism , Muscle, Skeletal/metabolism , Protein Biosynthesis , Swine
8.
Anim Nutr ; 8(1): 10-17, 2022 Mar.
Article in English | MEDLINE | ID: mdl-34977371

ABSTRACT

Early weaning in piglets can cause a series of negative effects. This causes serious losses to the livestock industry. N-Acetyl-D-glucosamine (D-GlcNAc) plays an important role in regulating the homeostasis of the intestine. This study aimed to investigate the effects of D-GlcNAc on the growth performance and intestinal function of weaned piglets. Twenty-four weaned piglets ([Yorkshire × Landrace] × Duroc, 6.58 ± 0.15 kg, n = 8) at 21 d old were fed 3 diets supplemented with 0 (control), 1 and 3 g/kg D-GlcNAc. The intestinal organoid model was used to verify the regulatory mechanism of D-GlcNAc on intestinal epithelial cells. On the whole, supplementation of D-GlcNAc in the piglet diet has no significant effect on the growth performance and diarrhoea of weaned piglets (P > 0.05). The apparent digestibility of nutrients and mRNA abundance of nutrient transporters in the 1 g/kg D-GlcNAc group were increased significantly (P < 0.05). D-GlcNAc did not affect villus height (VH) and crypt depth (CD) but resulted in a numerically shorter VH and shallower CD, which lead to an increase in ileal VH:CD ratio (P < 0.05). Cell shedding rates in the ileum villi increased (P < 0.05). The relative length and weight of the small intestine of weaned piglets increased (P < 0.05). In vitro studies found that the budding rates of organoids treated with 0.1 mmol/L D-GlcNAc increased on the d 3 and 5 (P < 0.05). The average budding numbers per budding organoid treated with 0.1 and 10 mmol/L D-GlcNAc increased on d 3 (P < 0.05). D-GlcNAc upregulated leucine rich repeat containing G protein-coupled receptor 5 (Lgr5 + ) and Chromogranin A mRNA abundance in organoids (P < 0.05). Mucin 2 (Muc2) expression increased when treated with 1 and 10 mmol/L D-GlcNAc (P < 0.05). In conclusion, dietary D-GlcNAc cannot improve the growth performance of weaned piglets. However, it can promote the growth and development of the intestinal tract and improve the digestion and absorption capacity of the intestine, which is achieved by affecting the activity of intestinal stem cells.

9.
Animals (Basel) ; 11(9)2021 Aug 26.
Article in English | MEDLINE | ID: mdl-34573479

ABSTRACT

Copper (Cu) is an essential micronutrient for animals. Many studies have been conducted on the effects of dietary Cu on growth performance, intestinal morphology, and function of piglets. However, the underlying mechanism remains to be explored. Intestinal stem cells (ISC) drive the development and constant renewal of intestinal epithelium. Therefore, we hypothesized that dietary Cu affects piglets' intestinal development via modulating ISC activity. A total of eighty-five 21-day-old piglets were randomly assigned to five groups, where 25, 50, 75, 100, and 125 mg CuSO4/kg on a dry matter basis were supplemented to the basal diet at phase 1 (day 0 to 21). Increasing the dietary Cu concentration decreased (p < 0.05) villus width but increased (p < 0.001) the number of Ki67-positive cells. At phase 2 (day 22 to 163), the other 45 pigs were offered the same diets. Villus height in the 125 mg/kg Cu group was greater (p < 0.001) than in the other groups. Moreover, the effects of Cu on ISC activity in vitro were tested to explore the underlying mechanism. Compared to the control group, 10 µmol/L CuSO4·5H2O increased (p < 0.001) the organoid budding efficiency, crypt depth, and crypts per organoid. Dietary Cu improved the intestinal morphology of finishing pigs via promoting cell proliferation and modulating ISC activity.

10.
Food Funct ; 12(16): 7402-7414, 2021 Aug 21.
Article in English | MEDLINE | ID: mdl-34190232

ABSTRACT

Niacin deficiency leads to inflammation of mucous membranes and diarrhoea. There are few reports on the effects of niacin on the intestinal health of weaned piglets. The present study was conducted to analyse the effects of niacin in weaned piglets along with its underlying mechanism. A total of 48 25-day-old weaned piglets (24 females and 24 males) were randomly allotted into four groups, each treatment were supplemented with 22.5, 30, 45, and 75 mg kg-1 niacin for a period of 14 days, with 12 piglets per diet and 1 piglet per pen. Six piglets (3 males and 3 females) were randomly selected from each treatment group and euthanised for intestinal tissue sampling on days 7 and 14 after the weaning day (day 0), respectively. Dietary niacin did not affect the growth performance of weaned piglets but quadratically affected (P < 0.05) the diarrhoea rate from days 7 to 14. The duodenal villus height and width and crypt depth in the 30 mg kg-1 niacin group were greater than those in the 45 mg kg-1 niacin group on day 7, and the jejunal crypt depth, ileal crypt depth, villus height and villus width decreased (linear, P < 0.05) with the increase in dietary niacin. However, the dietary supplementation with niacin increased (linear, P < 0.001) the jejunal villus height, crypt depth and villus width on day 14. Dietary niacin increased (linear, P < 0.05) the alkaline phosphatase activity in the jejunal mucosa of weaned piglets on day 7 but decreased (linear, P < 0.05) its activity on day 14. The number of Ki67 positive cells per crypt was decreased (linear, P < 0.05) with the dietary niacin on day 7 but increased (linear, P < 0.05) with dietary niacin contents on day 14. Moreover, dietary niacin altered (P < 0.05) SLC5A1, SLC15A1, SLC6A19, TJP-1, occludin and claudin-1 mRNA expression in the small intestine. These results indicate that dietary niacin has different effects on intestinal morphology and functions in the first and second weeks postweaning and that the dietary supplementation with niacin may, by modulating intestinal cell proliferation, affect the intestinal health.


Subject(s)
Body Weight/drug effects , Cell Proliferation/drug effects , Intestines/drug effects , Intestines/physiopathology , Niacin/pharmacology , Animals , Diarrhea/physiopathology , Diet , Dietary Supplements , Female , Male , Models, Animal , Niacin/administration & dosage , Swine , Weaning
11.
Vet Med Sci ; 7(5): 1860-1866, 2021 09.
Article in English | MEDLINE | ID: mdl-33955692

ABSTRACT

The purpose of this study was to investigate the effects of Amaranthus hypochondriacus (AH) inclusion in the diets of gestating and lactating sows on the lactational feed intake, nutrient digestibility, and growth performance of suckling piglets. During gestation, 40 multiparous Landrace sows were restrictively fed with either a control diet or a diet including 30% AH. Both diets had similar levels of digestible energy and crude protein, but the 30% AH diet had higher crude fibre levels than the control diet. After breeding, lactating sows were fed ad libitum with one of two isoenergetic and isonitrogenous diets, either a control diet or a diet containing 10% AH. In gestating sows, AH supplementation was found to be associated with decreased digestibility of crude protein and dry matter (p < .001), resulting in lesser backfat depth (p < .001). However, in lactating sows, AH supplementation had little effect on digestibility and milk composition; moreover, it increased the feed intake (p < .001) and decreased backfat loss (p < .001) in sows. On the 21st day of lactation, suckling piglets in AH group showed significantly greater average daily gains (p < .001), and average body weight and litter weight significantly increased compared with sows fed the control diet. In conclusion, AH-supplementation increased lactational feed intake in sows and improved the growth performance of suckling piglets.


Subject(s)
Amaranthus , Lactation , Animal Feed/analysis , Animals , Dietary Supplements , Eating , Nutrients , Plant Breeding , Pregnancy , Swine
12.
Anim Nutr ; 7(1): 101-110, 2021 Mar.
Article in English | MEDLINE | ID: mdl-33997337

ABSTRACT

The present study was conducted to evaluate the effect of dietary folic acid on the growth performance, intestinal morphology, and intestinal epithelial cells renewal in post-weaning piglets. Twenty-eight piglets (weaned at day 21, initial body weight of 6.73 ± 0.62 kg) were randomly allotted to 4 treatments with 7 pens per diet and 1 piglet per pen. The piglets were fed the same antibiotic-free and zinc oxide-free basal diets supplemented with folic acid at 0, 3, 9, and 18 mg/kg for 14 days. The results showed that dietary supplementation with folic acid increased villus height (VH) (P = 0.003; linear, P = 0.001), VH-to-crypt depth (VH:CD) ratio (P = 0.002; linear, P = 0.001), villus surface area (VSA) (P = 0.026; linear, P = 0.010). The analyzed parameters ADG, serum urea nitrogen (BUN) content, VH, VSA, and serum folate (SF) concentration responded linearly to the dietary folic acid concentration when the dietary folic acid concentration was below 4.42, 5.26, 4.79, 3.47, and 3.53 mg/kg respectively (R 2  = 0.995, 0.995, 0.999, 0.999, 0.872, P = 0.09, 0.07, 0.09, 0.09, 0.36, respectively), as assessed by a two-linear broken-line regression. Above these breakpoints, the response of ADG, VH, VSA, and SF plateaued in response to changes in dietary folic acid concentration. Moreover, dietary supplementation with folic acid significantly increased the lactase (P = 0.001; linear, P = 0.001) and sucrase activities (P = 0.021; linear, P = 0.010) in the jejunal mucosa of weaned piglets. The mRNA expression of solute carrier family 6 member 19 (SLC6a19), solute carrier family 1 member 1 (SLC7a1), tumor necrosis factor-α (TNF-α), the number of Ki67 positive cells, and cell shedding rate had a significant linear contrast (P = 0.023, 0.021, 0.038, 0.049, and 0.008, respectively) in dietary folic acid groups. In conclusion, our results indicate that folic acid supplementation can improve the growth performance and intestinal morphology of weaned piglets by maintaining the balance of epithelial cell renewal.

13.
Vet Med Sci ; 7(4): 1347-1358, 2021 07.
Article in English | MEDLINE | ID: mdl-33620158

ABSTRACT

The purpose of this study was to investigate the effects of adding Pennisetum purpureum (P. purpureum, also known as Napier grass or elephant grass) to the diets of late gestation on the antioxidant indexes, immune indexes and faecal microbiota of sows. At the 90 days of gestation, 300 healthy sows were randomly divided into three groups, and they received the basic commercial diet or added 5% P. purpureum and 10% P. purpureum, respectively. The experiment started from 90 days of gestation to parturition. The results showed that the total antioxidant capacity, immunoglobulins and serum equol concentrations of sows on 100 days of gestation and at parturition increased linearly (p < .05) with the increase of the content of P. purpureum in the gestation diet. The 5% P. purpureum increased the relative abundance of Bacteroidetes (p = .027) and Actinobacteria (p < .001) at phylum level, Coriobacteriaceae (p < .001) at family level and Prevotellaceae_UCG_001 (p = .004) at genus level, and decreased the relative abundance of Escherichia_Shigella (p < .001) at genus level. In summary, this study shows that the additive of P. purpureum can increase the concentration of serum equol, improve the antioxidant capacity and immune function of sow in late gestation. In addition, the additive of 5% P. purpureum in the diet might change the composition of intestinal microbiota of sows, particularly the relative abundance of Coriobacteriaceae (p < .001) increased.


Subject(s)
Antioxidants/metabolism , Dietary Supplements/analysis , Feces/microbiology , Immunity, Innate , Microbiota , Pennisetum/chemistry , Pregnancy, Animal/physiology , Sus scrofa/immunology , Animal Feed/analysis , Animals , Diet/veterinary , Female , Immunity, Innate/drug effects , Microbiota/drug effects , Pregnancy , Pregnancy, Animal/drug effects
14.
J Anim Sci ; 99(1)2021 Jan 01.
Article in English | MEDLINE | ID: mdl-33476395

ABSTRACT

Folate is increasingly thought to promote gastrointestinal health and regulate the diversity of gut microbiota to alleviate weaning stress in piglets. The present study was conducted to investigate the effects of folate on organ weight, digesta pH, short-chain fatty acids (SCFAs) concentration, and intestinal microbiota in weaned piglets. A total of 28 piglets (6.73 ± 0.62 kg) were allocated to four dietary treatments consisting of a control group, 3, 9, and 18 mg/kg of folate supplementation in a 14-d feeding trial. The results showed that piglets fed with 9 and 18 mg/kg of folate supplementation had greater (P < 0.05) average liver and spleen weight than the control group. Folate supplementation (9 and 18 mg/kg) can significantly increase (P < 0.05) the stomach pH and tend (P < 0.10) to decrease the cecum pH. Folate treatment (9 and 18 mg/kg) had a positive effect on the metabolism of SCFAs in piglets, in particular, compared with the control group, and the content of acetic acid (AA) and valeric acid was markedly increased (P < 0.05) in the cecum and colon, respectively. Moreover, isobutyric acid, butyric acid, and isovaleric acid were tended (P < 0.10) to increase in the colon. Cecum contents samples were used to determine bacterial community diversity by 16S rRNA gene amplicon sequencing. At the genus level, in the cecum, there was a higher (P < 0.05) relative abundance of Lactobacillus reuteri, Lactobacillus salivarius, and Lactobacillus mucosae in the 9 mg/kg folate supplementation group. The functional pathways analysis predicted that folate may modify nutrient metabolism by changing the gut microbiota function of weaned piglets. Furthermore, the data showed that Lactobacillus was positively correlated with AA in the cecum. Overall, these findings suggested that folate treatment could increase the organ weight and the stomach pH of weaned piglets and had beneficial effects on gut health, which might be attributed to the alteration in intestinal microbiota induced by folate and the interaction of the intestinal microbiota with SCFAs.


Subject(s)
Gastrointestinal Microbiome , Animal Feed/analysis , Animals , Dietary Supplements/analysis , Fatty Acids, Volatile , Folic Acid , Hydrogen-Ion Concentration , Lactobacillus , Organ Size , RNA, Ribosomal, 16S , Swine , Weaning
15.
J Anim Physiol Anim Nutr (Berl) ; 105(2): 272-285, 2021 Mar.
Article in English | MEDLINE | ID: mdl-33399256

ABSTRACT

Fifty-six piglets were weaned at 21 days and randomly assigned to 1 of 8 dietary treatments with 7 replicate pens for a 14-day experimental period. The eight experimental diets were prepared via a 2 × 4 factorial arrangement with citric acid (CA; 0 and 0.3%) and dietary electrolyte balance (dEB, Na +K - Cl mEq/kg of the diet; -50, 100, 250, and 400 mEq/kg). Varying dEB values were obtained by altering calcium chloride and sodium bicarbonate contents. Dietary CA significantly increased (p < .05) villus height (VH) and villus height:crypt depth (VH:CD) in the jejunum. Piglets fed a 250 mEq/kg diet increased (p < .05) VH and VH:CD values in the duodenum. Jejunal VH and VH:CD increased (quadratic; p < .05), and ileal VH:CD (liner and quadratic; p < .05) decreased as dEB was increased in diets without CA, but no such effect was observed on the diets containing CA (dEB ×CA; p < .05). The CD in jejunum (quadratic; p < .05) increased as dEB was increased in diets containing CA, whereas it was decreased (linear; p < .05) in the diets without CA (dEB ×CA; p < .001). Dietary CA increased maltase activity and reduced the number of Ki67-positive cells (p < .05). Increasing dEB values in diets without CA increased sucrose and lactase activities (quadratic; p < .05), but no such effect was observed in the diets with CA (dEB ×CA; p < .05). An interaction effect between dEB and CA on the number of Ki67-positive cells was observed (p < .001). In conclusion, 250 mEq/kg dEB diet with CA improved piglet intestinal digestion and absorption function by improving intestinal morphology and increasing digestive enzyme activities. However, these improvements were also observed in piglets fed the 100 mEq/kg dEB diet without CA.


Subject(s)
Animal Feed , Citric Acid , Animal Feed/analysis , Animals , Diet/veterinary , Dietary Supplements , Nutrients , Swine , Water-Electrolyte Balance
16.
Food Chem ; 339: 127849, 2021 Mar 01.
Article in English | MEDLINE | ID: mdl-32858383

ABSTRACT

Anthocyanin-rich purple highland barley has attracted great attention recently due to its health benefits in humans. The composition of the purified anthocyanin extract (PAE) from purple highland barley bran (PHBB) was characterized by liquid chromatography-mass spectrometry (LC-MS) with a high acylated anthocyanin profile. PAE exhibited high antioxidant activity and potential neuroprotective effects on cobalt chloride (CoCl2)-induced hypoxic damage in PC12 cells by maintaining cell viability, restoring cell morphology, inhibiting lactic dehydrogenase (LDH) leakage, reducing reactive oxygen species (ROS) levels, enhancing antioxidant enzyme activities, inhibiting cell apoptosis, and attenuating cell cycle arrest. Treatment cells (PC12 and U2OS) with PAE activated autophagy, indicating that autophagy possibly acted as a survival mechanism against CoCl2-induced injury. This study demonstrated that PAE from the PHBB was a high-quality natural functional food colorant and potentially could be used as a preventive agent for brain dysfunction caused by hypoxic damage.


Subject(s)
Anthocyanins/analysis , Antioxidants/chemistry , Hordeum/chemistry , Neuroprotective Agents/chemistry , Plant Extracts/chemistry , Animals , Apoptosis/drug effects , Autophagy/drug effects , Cell Cycle Checkpoints/drug effects , Cell Line, Tumor , Cell Survival/drug effects , Chromatography, High Pressure Liquid , Cobalt/toxicity , Hordeum/metabolism , Humans , Mass Spectrometry , Neuroprotective Agents/pharmacology , PC12 Cells , Plant Extracts/analysis , Plant Extracts/pharmacology , Rats , Reactive Oxygen Species/chemistry , Reactive Oxygen Species/metabolism
17.
Oxid Med Cell Longev ; 2020: 8815383, 2020.
Article in English | MEDLINE | ID: mdl-33381268

ABSTRACT

Zinc lactate (ZnLA) is a new organic zinc salt which has antioxidant properties in mammals and can improve intestinal function. This study explored the effects of ZnLA and ZnSO4 on cell proliferation, Zn transport, antioxidant capacity, mitochondrial function, and their underlying molecular mechanisms in intestinal porcine epithelial cells (IPEC-J2). The results showed that addition of ZnLA promoted cell proliferation, inhibited cell apoptosis and IL-6 secretion, and upregulated the mRNA expression and concentration of MT-2B, ZNT-1, and CRIP, as well as affected the gene expression and activity of oxidation or antioxidant enzymes (e.g., CuZnSOD, CAT, and Gpx1, GSH-PX, LDH, and MDA), compared to ZnSO4 or control. Compared with the control, ZnLA treatment had no significant effect on mitochondrial membrane potential, whereas it markedly increased the mitochondrial basal OCR, nonmitochondrial respiratory capacity, and mitochondrial proton leakage and reduced spare respiratory capacity and mitochondrial reactive oxygen (ROS) production in IPEC-J2 cells. Furthermore, ZnLA treatment increased the protein expression of Nrf2 and phosphorylated AMPK, but reduced Keap1 and p62 protein expression and autophagy-related genes LC3B-1 and Beclin mRNA abundance. Under H2O2-induced oxidative stress conditions, ZnLA supplementation markedly reduced cell apoptosis and mitochondrial ROS levels in IPEC-J2 cells. Moreover, ZnLA administration increased the protein expression of Nrf2 and decreased the protein expression of caspase-3, Keap1, and p62 in H2O2-induced IPEC-J2 cells. In addition, when the activity of AMPK was inhibited by Compound C, ZnLA supplementation did not increase the protein expression of nuclear Nrf2, but when Compound C was removed, the activities of AMPK and Nfr2 were both increased by ZnLA treatment. Our results indicated that ZnLA could improve the antioxidant capacity and mitochondrial function in IPEC-J2 cells by activating the AMPK-Nrf2-p62 pathway under normal or oxidative stress conditions. Our novel finding also suggested that ZnLA, as a new feed additive for piglets, has the potential to be an alternative for ZnSO4.


Subject(s)
Intestinal Mucosa/drug effects , Mitochondria/drug effects , Zinc Compounds/pharmacology , Animals , Animals, Newborn , Cell Line , Cell Survival/drug effects , Epithelial Cells/drug effects , Epithelial Cells/metabolism , Homeostasis/drug effects , Intestinal Mucosa/cytology , Intestinal Mucosa/metabolism , Lactates/pharmacology , Membrane Potential, Mitochondrial/drug effects , Mitochondria/physiology , Oxidation-Reduction/drug effects , Oxidative Stress/drug effects , Reactive Oxygen Species/metabolism , Signal Transduction/drug effects , Swine , Zinc Sulfate/pharmacology
18.
J Anim Sci ; 98(8)2020 Aug 01.
Article in English | MEDLINE | ID: mdl-32756964

ABSTRACT

The purpose of the present study was to discover the effects of iron on the intestinal development and epithelial maturation of suckling piglets. Twenty-seven newborn male piglets from 9 sows (3 piglets per sow), with similar body weight, were selected. The 3 piglets from the same sow were randomly divided into 1 of the 3 groups. The piglets were orally administrated with 2 mL of normal saline (CON group) or with 25 mg of iron by ferrous sulfate (OAFe group; dissolved in normal saline) on the 2nd, 7th, 12th, and 17th day, respectively, or intramuscularly injected with 100 mg of iron by iron dextran (IMFe group) on the 2nd day. The slaughter was performed on the 21st day and intestinal samples were collected. Compared with the CON group, iron supplementation significantly increased the length (P < 0.001), weight (P < 0.001), relative weight (P < 0.001), and the length:weight ratio (P < 0.001) of the small intestine in both OAFe and IMFe groups. The villus height (P < 0.001), crypt depth (CD) (P < 0.001), villus width (P = 0.002), and surface area (P < 0.001) in the jejunum of IMFe and OAFe piglets were also greater than those in CON piglets. The mRNA expression of trehalase (Treh; P = 0.002) and sucrase isomaltase (Sis; P = 0.043), markers of epithelial maturation, increased in OAFe and IMFe piglets, respectively. Moreover, enterocyte vacuolization, observed in fetal-type enterocyte, was reduced in OAFe and IMFe piglets, compared with CON piglets. However, no significant difference in the expression of the target genes of wnt/ß-catenin signaling pathway was observed. The results indicated that both oral administration and intramuscular injection with iron promoted intestinal development and epithelial maturation in suckling piglets and that the effects of iron may be independent of wnt/ß-catenin signaling.


Subject(s)
Dietary Supplements/analysis , Iron/administration & dosage , Swine/growth & development , Administration, Oral , Animals , Epithelium/drug effects , Epithelium/growth & development , Female , Injections, Intramuscular , Intestinal Mucosa/metabolism , Intestines/drug effects , Intestines/growth & development , Iron/metabolism , Jejunum/drug effects , Jejunum/growth & development , Jejunum/metabolism , Male , Random Allocation
19.
J Agric Food Chem ; 68(31): 8321-8329, 2020 Aug 05.
Article in English | MEDLINE | ID: mdl-32706966

ABSTRACT

Bixin is a natural carotenoid isolated from the seeds of Bixa orellana, with numerous important pharmacological activities, including antioxidant and antifibrotic effects. The nuclear factor erythroid-2-related factor2 (Nrf2) signaling pathway induced by bixin is involved in the process. Excessive reactive oxygen species generation in tubular cells contributes to kidney interstitial fibrosis. The potential therapeutic strategy for bixin in alleviating kidney fibrosis remains largely unclear. In this study, we used unilateral ureteral obstruction (UUO) to establish a renal fibrotic model. Dramatic oxidative DNA damage occurs in kidneys, especially in tubular cells after UUO. In cultured tubular cells, bixin could induce Nrf2 signaling activation by suppressing Nrf2 ubiquitination and increasing its protein stability. Transforming growth factor beta 1-induced epithelial-to-mesenchymal transition (EMT) and extracellular matrix production were suppressed by bixin, and blockade of Nrf2 activation by small interfering RNA could largely reverse the protective effect of bixin. In vivo studies showed that administration of bixin induces Nrf2 signaling activation in tubular cells and markedly attenuates partial EMT of tubular cells and kidney interstitial fibrosis after subjecting to UUO. Together, this study implies that bixin may protect against kidney interstitial fibrosis through stimulating Nrf2 activation in renal tubular cells.


Subject(s)
Carotenoids/administration & dosage , Fibrosis/prevention & control , Kidney Diseases/prevention & control , NF-E2-Related Factor 2/metabolism , Plant Extracts/administration & dosage , Ureteral Obstruction/complications , Animals , Bixaceae/chemistry , Fibrosis/etiology , Fibrosis/genetics , Fibrosis/metabolism , Humans , Kidney/metabolism , Kidney/pathology , Kidney Diseases/etiology , Kidney Diseases/genetics , Kidney Diseases/metabolism , Male , Mice , Mice, Inbred C57BL , NF-E2-Related Factor 2/genetics
20.
J Anim Sci Biotechnol ; 11: 56, 2020.
Article in English | MEDLINE | ID: mdl-32514342

ABSTRACT

BACKGROUND: Oxidative stress is a key factor that influences piglets' health. Taurine plays an imperative role in keeping the biological system from damage. This study was conducted to investigate the protective effect of taurine against muscle injury due to the secondary effect of diquat toxicity. RESULTS: Our study found that taurine effectively and dose-dependently alleviated the diquat toxicity induced rise of feed/gain, with a concurrent improvement of carcass lean percentage. The plasma content of taurine was considerably increased in a dose-dependent manner. Consequently, dietary taurine efficiently improved the activity of plasma antioxidant enzymes. Furthermore, taurine attenuated muscle damage by restoring mitochondrial micromorphology, suppressing protein degradation and reducing the percentage of apoptotic cells in the skeletal muscle. Taurine supplementation also suppressed the genes expression levels of the antioxidant-, mitochondrial biogenesis-, and muscle atrophy-related genes in the skeletal muscle of piglets with oxidative stress. CONCLUSIONS: These results showed that the dose of 0.60% taurine supplementation in the diet could attenuate skeletal muscle injury induced by diquat toxicity. It is suggested that taurine could be a potential nutritional intervention strategy to improve growth performance.

SELECTION OF CITATIONS
SEARCH DETAIL