Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
1.
JMIR Form Res ; 8: e52337, 2024 Feb 16.
Article in English | MEDLINE | ID: mdl-38363589

ABSTRACT

BACKGROUND: Circumcision as a common elective pediatric surgery worldwide is a stressful and anxiety-inducing experience for parents and children. Although current perioperative interventions proved effective, such as reducing preoperative anxiety, there are limited holistic solutions using mobile apps. OBJECTIVE: This paper aims to describe the development and primary evaluation of an intelligent customer-driven smartphone-based app program (ICory-Circumcision) to enhance health outcomes among children undergoing circumcision and their family caregivers. METHODS: Based on the review of the literature and previous studies, Bandura's self-efficacy theory was adopted as the conceptual framework. A multidisciplinary team was built to identify the content and develop the apps. Semistructured interviews were conducted to evaluate the ICory-Circumcision. RESULTS: The ICory-Circumcision study was carried out from March 2019 to January 2020 and comprised 2 mobile apps, BuddyCare app and Triumf Health mobile game app. The former provides a day-by-day perioperative guide for parents whose children are undergoing circumcision, while the latter provides emotional support and distraction to children. In total, 6 participants were recruited to use the apps and interviewed to evaluate the program. In total, 4 main categories and 10 subcategories were generated from content analysis. CONCLUSIONS: ICory-Circumcision seemed to lean toward being useful. Revisions to ICory-Circumcision are necessary to enhance its contents and features before advancing to the randomized controlled trial. TRIAL REGISTRATION: ClinicalTrials.gov NCT04174404; https://clinicaltrials.gov/ct2/show/NCT04174404.

2.
Huan Jing Ke Xue ; 43(11): 5149-5158, 2022 Nov 08.
Article in Chinese | MEDLINE | ID: mdl-36437087

ABSTRACT

The study of the effects of different fertilization treatments on soil methane (CH4) and nitrous oxide (N2O) emissions in rice-vegetable rotation systems is of great significance to supplement the research gap on greenhouse gas emissions in tropical regions of China. In this study, four fertilization treatments were set up during the pepper season:phosphorus and potassium fertilizer application (PK); nitrogen, phosphorus, and potassium (NPK) application; half application of nitrogen, phosphorus, and potassium plus half application of organic fertilizer (NPK+M); and application of organic fertilizer (M). There was no fertilizer application during the following early rice season. The objective of our study was to investigate the rules of CH4 and N2O emissions under different fertilization treatments in the pepper growth season, and the effects of different fertilization treatments in the pepper growth season on rice yield, and CH4 and N2O emissions in the following early rice growth season. The close static chamber-gas chromatography method was applied to determine soil CH4 and N2O emissions. We measured crop yield, estimated global warming potential (GWP), and calculated greenhouse gas emission intensity (GHGI). Our results showed that:① the cumulative CH4 emission under the four fertilization treatments ranged between 0.9 kg·hm-2 to 2.7 kg·hm-2 during the pepper growth season and between 5.5 kg·hm-2 to 8.4 kg·hm-2 during the early rice growth season. Compared with NPK, NPK+M and M reduced the cumulative CH4 emission in the pepper growth season by 35.3% and 7.6%, respectively; however, NPK+M and M increased the cumulative CH4 emission in the early rice season by 37.5% and 55.1%, respectively. There was a significant difference in cumulative CH4 emission between M and NPK in the early rice growth season. ② The cumulative N2O emission under the four fertilization treatments varied from 0.5 kg·hm-2 to 3.0 kg·hm-2 in the pepper growth season and from 0.3 kg·hm-2 to 0.5 kg·hm-2 in the early rice growth season. The cumulative N2O emission was significantly decreased by 33.7% in NPK+M and by 16.0% in M, compared with that in NPK. In the early rice growth season, the cumulative N2O emission was decreased by 23.5% by NPK+M but was increased by 9.1% by M. There was no significant difference in the cumulative N2O emission among the four fertilization treatments. ③ The yields of pepper and early rice under the four fertilization treatments were 3055.6-37722.5 kg·hm-2 and 5850.9-6994.4 kg·hm-2, respectively. Compared with that in NPK, NPK+M and M significantly increased pepper yield. The GWP under the four fertilization treatments in the pepper-early rice rotation system varied from 508.0 kg·hm-2 to 1864.4 kg·hm-2. Compared with NPK, NPK+M significantly decreased GWP by 25.7% and M insignificantly decreased GWP by 5.7%. The pepper growth season with the four fertilization treatments contributed to 69.2%-78.1% of the total GWP, and N2O contributed to 77.3%-85.3% of the total GWP. The GHGI ranged between 0.03 kg·kg-1 and 0.09 kg·kg-1 in the pepper growth season and between 0.04 kg·kg-1 and 0.24 kg·kg-1 in the early rice growth season. Compared with that in NPK, both M and NPK+M significantly reduced the GHGI by 71.5% and 54.7%, respectively, in the pepper growth season. In the early rice season, NPK+M significantly decreased the GHGI by 44.0%, but M non-significantly decreased the GHGI by 20.8%. The peak in N2O emission in the tropical pepper-early rice rotation system appeared after fertilization, and N2O emissions primarily occurred in the pepper growth season. However, CH4 emission was mainly concentrated in the early rice season. Considering the overall enhancing effects on crop yield and mitigation of greenhouse gas emissions, the co-application of chemical and organic fertilizers (NPK+M) can be recommended as an optimal fertilization practice to mitigate greenhouse gas emissions and maintain crop yield in pepper-rice rotation systems of Hainan, China.


Subject(s)
Greenhouse Gases , Oryza , Nitrous Oxide/analysis , Methane/analysis , Greenhouse Gases/analysis , Vegetables , Agriculture/methods , Fertilizers/analysis , Soil/chemistry , Nitrogen/analysis , Phosphorus/analysis , Potassium , Fertilization
3.
Environ Geochem Health ; 44(12): 4631-4645, 2022 Dec.
Article in English | MEDLINE | ID: mdl-35247121

ABSTRACT

The effects of metal pollution on tea are of great concern to consumers. We apply Geographic information systems technology to study the distribution of heavy metal elements in tea plantation ecosystems in Jiangsu Province, explore the relationships among metals in the soil, tea leaves and tea infusions, and assess the human safety risks of metals. The concentrations of nine metals in a soil-tea leaves-tea infusion system were studied at 100 randomly selected tea plantations in Jiangsu Province, China. Concentrations of selected metals, zinc (Zn), nickel (Ni), manganese (Mn), chromium (Cr) and copper (Cu), were quantified using an inductively coupled plasma-optical emission spectrometer (ICP-OES), and cadmium (Cd), arsenic (As), plumbum (Pb) and mercury (Hg) were quantified using inductively coupled plasma-mass spectrometry (ICP-MS). Arc-Map 10.3 was used for the spatial analysis of metals in soil, tea leaves and tea infusions. We found that the contents of Mn, Ni and Zn are high level in soil, tea leaves and tea infusions. The Mn level showed a spatial distribution pattern with greater concentrations at the junction of Nanjing and Yangzhou, southwest of Changzhou and west of Suzhou. The hazard index (HI) values in north-central Nanjing, southern Suzhou, southwestern Changzhou and northern Lianyungang were relatively greater. The Zn, Ni, Mn, Cr and Cu levels in the soil-tea infusion system were 17.3, 45.5, 54.5, 1.5 and 14.3%, respectively. The order of the leaching rates of the elements was Ni > Cr > Zn > Mn > Cu. The relative contribution ratios of HI were in the order of Mn > Ni > Cu > Zn > Cr > Pb > Cd > As > Hg. In tea infusions, the Mn level has the greatest potential health risks to consumers. Moreover, using Csoil it was inferred that the safety thresholds of Zn, Ni, Mn, Cr and Cu in soil were 27,700, 50, 1230, 493,000 and 16,800 mg L-1, respectively. The content of heavy metals in soil and tea varies greatly in different regions of Jiangsu Province, 92% of the soil has heavy metal content that meets the requirements of pollution-free tea gardens, 91% of tea samples met the requirements of green food tea. The thresholds for Ni (50 mg L-1) and Mn (1230 mg L-1) can be used as maximum limits in tea plantation soils. The consumption of tea infusions did not pose metal-related risks to human health.


Subject(s)
Arsenic , Mercury , Metals, Heavy , Soil Pollutants , Trace Elements , Humans , Soil/chemistry , Soil Pollutants/analysis , Cadmium/analysis , Ecosystem , Lead/analysis , Environmental Monitoring/methods , Metals, Heavy/analysis , Risk Assessment , Arsenic/analysis , Trace Elements/analysis , Mercury/analysis , Chromium/analysis , Tea/chemistry , Nickel/analysis , Manganese/analysis
4.
Sci Total Environ ; 810: 151282, 2022 Mar 01.
Article in English | MEDLINE | ID: mdl-34757096

ABSTRACT

Climate change leads to more serious drying-rewetting alternation disturbance, which furtherly affects soil ecosystem function and agriculture production. Intercropping green manure, as an ancient agricultural practice, can improve the physical, chemical, and biological fertility of soil in tea plantation. However, the effects of intercropping green manure on soil multifunctional resistance to drying-rewetting disturbance in tea plantation has not been reported. In this study, the effects of different green manure practices over four years (tea plant monoculture, tea plant and soybean intercropping, tea plant and soybean + milk vetch intercropping) on soil multifunctionality resistance to drying-rewetting cycles, and the pivotal influencing factors were investigated. We used quantitative PCR array and analysis of multiple enzyme activities to characterize the abundance of functional genes and ecosystem multifunctionality, respectively. Compared with tea plantation monoculture, tea plant intercropping soybean and soybean + milk vetch significantly increased multifunctionality resistance by 12.07% and 25.86%, respectively. Random forest analysis indicated that rather than the diversity, the abundance of functional genes was the major drive of multifunctionality resistance. The structure equation model further proved that tea plantation intercropping green manure could improve the abundance of C cycling related functional genes mediated by soil properties, and ultimately increased multifunctionality resistance to drying-rewetting disturbance. Therefore, tea plantation intercropping green manure is an effective approach to maintain the multifunctionality resistance, which is conducive to maintain the soil nutrient supply capacity and tea production under the disturbance of drying-rewetting alternation.


Subject(s)
Manure , Soil , Ecosystem , Soil Microbiology , Tea
5.
Oxid Med Cell Longev ; 2021: 6660616, 2021.
Article in English | MEDLINE | ID: mdl-33936383

ABSTRACT

Oxidative stress can cause the excessive generation of reactive oxygen species (ROS) and has various adverse effects on muscular mitochondria. Qiangji Jianli decoction (QJJLD) is an effective traditional Chinese medicine (TCM) that is widely applied to improve muscle weakness, and it has active constituents that prevent mitochondrial dysfunction. To investigate the protective mechanism of QJJLD against hydrogen peroxide- (H2O2-) mediated mitochondrial dysfunction in L6 myoblasts. Cell viability was determined with MTT assay. Mitochondrial ultrastructure was detected by transmission electron microscope (TEM). ROS and mitochondrial membrane potential (MMP) were analyzed by fluorescence microscope and flow cytometry. The superoxide dismutase (SOD), glutathione peroxidase (GSH-Px) activity, and malondialdehyde (MDA) level were determined by WST-1, TBA, and DTNB methods, respectively. The mRNA and protein levels were measured by quantitative real-time PCR (qRT-PCR) and Western blot. The cell viability was decreased, and the cellular ROS level was increased when L6 myoblasts were exposed to H2O2. After treatment with QJJLD-containing serum, the SOD and GSH-Px activities were increased. MDA level was decreased concurrently. ROS level was decreased while respiratory chain complex activity and ATP content were increased in L6 myoblasts. MMP loss was attenuated. Mitochondrial ultrastructure was also improved. Simultaneously, the protein expressions of p-AMPK, PGC-1α, NRF1, and TFAM were upregulated. The mRNA and protein expressions of Mfn1/2 and Opa1 were also upregulated while Drp1 and Fis1 were downregulated. These results suggest that QJJLD may alleviate mitochondrial dysfunction through the regulation of mitochondrial dynamics and biogenesis, the inhibition of ROS generation, and the promotion of mitochondrial energy metabolism.


Subject(s)
Antigens, Surface/metabolism , DNA, Mitochondrial/adverse effects , Drugs, Chinese Herbal/therapeutic use , Hydrogen Peroxide/adverse effects , Neoplasm Proteins/metabolism , Animals , Drugs, Chinese Herbal/pharmacology , Humans , Mitochondrial Dynamics/drug effects , Myoblasts/metabolism , Organelle Biogenesis , Rats
6.
Biomed Pharmacother ; 129: 110482, 2020 Sep.
Article in English | MEDLINE | ID: mdl-32768964

ABSTRACT

The Qiangji Jianli Decoction (QJJLD) is an effective Chinese medicine formula for treating Myasthenia gravis (MG) in the clinic. QJJLD has been proven to regulate mitochondrial fusion and fission of skeletal muscle in myasthenia gravis. In this study, we investigated whether QJJLD plays a therapeutic role in regulating mitochondrial biogenesis in MG and explored the underlying mechanism. Rats were experimentally induced to establish autoimmune myasthenia gravis (EAMG) by subcutaneous immunization with R97-116 peptides. The treatment groups were administered three different dosages of QJJLD respectively. After the intervention of QJJLD, the pathological changes of gastrocnemius muscle in MG rats were significantly improved; SOD, GSH-Px, Na+-K+ ATPase and Ca2+-Mg2+ ATPase activities were increased; and MDA content was decreased in the gastrocnemius muscle. Moreover, AMPK, p38MAPK, PGC-1α, NRF-1, Tfam and COX IV mRNA and protein expression levels were also reversed by QJJLD. These results implied that QJJLD may provide a potential therapeutic strategy through promoting mitochondrial biogenesis to alleviate MG via activating the AMPK/PGC-1α signaling pathway.


Subject(s)
AMP-Activated Protein Kinases/metabolism , Drugs, Chinese Herbal/pharmacology , Mitochondria, Muscle/drug effects , Muscle, Skeletal/drug effects , Myasthenia Gravis, Autoimmune, Experimental/drug therapy , Organelle Biogenesis , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/metabolism , AMP-Activated Protein Kinases/genetics , Animals , Female , Gene Expression Regulation , Mitochondria, Muscle/enzymology , Mitochondria, Muscle/genetics , Mitochondria, Muscle/ultrastructure , Muscle, Skeletal/enzymology , Muscle, Skeletal/ultrastructure , Myasthenia Gravis, Autoimmune, Experimental/enzymology , Myasthenia Gravis, Autoimmune, Experimental/immunology , Myasthenia Gravis, Autoimmune, Experimental/pathology , Peptide Fragments , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/genetics , Rats, Inbred Lew , Receptors, Cholinergic , Signal Transduction
7.
Genomics ; 112(3): 2194-2202, 2020 05.
Article in English | MEDLINE | ID: mdl-31870711

ABSTRACT

SQUAMOSA promoter-binding protein (SBP)-box gene family is one kind of plant-specific transcription factor that plays important roles in the process of resisting abiotic stress. The SBP-box gene family has been studied in many species, but their functions are not yet clear in Camellia sinensis var. sinensis (CSS) (tea) plants. In our study, 25 SBP-box genes in the CSS were identified in the reference genome and classified into six groups based on a phylogenetic tree. The expression pattern of CsSBP genes under temperature stresses showed that CsSBPs were involved in the process of resisting temperature stresses. CsSBP8 had a positive effect on the anthocyanin accumulation during high temperature exposures, but CsSBP12 has a high correlation with anthocyanin accumulation during both high and low temperature. This study provides a foundation for the further study of CsSBP genes involved in the anthocyanin biosynthesis pathway during the temperature stress in tea.


Subject(s)
Camellia sinensis/genetics , Plant Proteins/genetics , Stress, Physiological/genetics , Transcription Factors/genetics , Anthocyanins/metabolism , Camellia sinensis/metabolism , Genome, Plant , MicroRNAs/metabolism , Multigene Family , Phylogeny , Plant Proteins/chemistry , Plant Proteins/classification , Plant Proteins/metabolism , Promoter Regions, Genetic , Sequence Alignment , Sequence Analysis, Protein , Temperature , Transcription Factors/chemistry , Transcription Factors/classification , Transcription Factors/metabolism
8.
Sci Rep ; 8(1): 8623, 2018 06 05.
Article in English | MEDLINE | ID: mdl-29872094

ABSTRACT

Myasthenia gravis (MG) is an autoimmune neuromuscular disease characterized by the production of antibodies against acetylcholine receptors (AChRs). Qiangji Jianli (QJJL) decoction is an effective traditional Chinese medicine (TCM) that is used to treat MG. Our study aimed to investigate the effect of QJJL decoction on MG and to clarify the mechanism by which QJJL regulates mitochondrial energy metabolism and mitochondrial fusion and fission (MFF). SPF female Lewis rats were administered Rat 97-116 peptides to induce experimental autoimmune myasthenia gravis (EAMG). The treatment groups received QJJL decoction (7.8 g/kg, 15.6 g/kg and 23.4 g/kg). Mitochondria were extracted from gastrocnemius tissue samples to detect respiratory chain complex enzymatic activity. Quantitative PCR and western blot analysis were performed to detect Mfn1/2, Opa1, Drp1 and Fis1 mRNA and protein expression, respectively, in the mitochondria. Transmission electron microscopy examination was performed to show the improvement of mitochondria and myofibrils after QJJL treatment. The results indicated that QJJL decoction may attenuate MG by promoting the enzymatic activity of respiratory chain complexes to improve energy metabolism. Moreover, QJJL decoction increased Mfn1/2, Opa1, Drp1 and Fis1 mRNA and protein expression to exert its curative effect on MFF. Thus, QJJL decoction may be a promising therapy for MG.


Subject(s)
Electron Transport/drug effects , Energy Metabolism/drug effects , Mitochondria/drug effects , Mitochondrial Dynamics/drug effects , Myasthenia Gravis/drug therapy , Plant Extracts/administration & dosage , Animals , Disease Models, Animal , Gene Expression/drug effects , Gene Expression Profiling , Mitochondrial Proteins/biosynthesis , Plant Extracts/isolation & purification , Plants, Medicinal/chemistry , Rats, Inbred Lew , Real-Time Polymerase Chain Reaction , Treatment Outcome
SELECTION OF CITATIONS
SEARCH DETAIL