Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 52
Filter
Add more filters

Complementary Medicines
Country/Region as subject
Publication year range
1.
Chin Med ; 19(1): 48, 2024 Mar 18.
Article in English | MEDLINE | ID: mdl-38500179

ABSTRACT

BACKGROUND: HBV infection can result in severe liver diseases and is one of the primary causes of liver cell carcinoma-related mortality. Liuwei Wuling tablet (LWWL) is a traditional Chinese medicine formula, with a protecting liver and decreasing enzyme activity, usually used to treat chronic hepatitis B with NAs in clinic. However, its main active ingredients and mechanism of action have not been fully investigated. Hence, we aimed to screen the active ingredient and effective ingredient combinations from Liuwei Wuling tablet to explore the anti-herpatitis B virus activity and mechanism. METHODS: Analysis and screening of effective antiviral components in LWWL by network pharmacology, luteolin (Lut) may be a compound with significant antiviral activity. The mechanism of antiviral action of Lut was also found by real-time PCR detection and western blotting. Meanwhile, we established a co-culture model to investigate the antiviral mechanism of Schisandrin C (SC), one of the main active components of Schisandra chinensis fructus (the sovereign drug of LWWL). Next, HBV-infected mice were established by tail vein injection of pAAV-HBV1.2 plasmid and administered continuously for 20 days. And their antiviral capacity was evaluated by checking serum levels of HBsAg, HBeAg, levels of HBV DNA, and liver levels of HBcAg. RESULTS: In this study, we conducted network pharmacology analysis on LWWL, and through in vitro experimental validation and data analysis, we found that luteolin (Lut) possessed obviously anti-HBV activity, inhibiting HBV replication by downregulating hepatocyte nuclear factor 4α (HNF4α) via the ERK pathway. Additionally, we established a co-culture system and proved that SC promoted activation of cGAS-STINIG pathway and IFN-ß production in THP-1 cells to inhibit HBV replication in HepG2.2.15 cells. Moreover, we found the combination of SC and Lut shows a greater effect in inhibiting HBV compared to SC or Lut alone in HBV-infected mice. CONCLUSION: Taken together, our study suggests that combination of SC and Lut may be potential candidate drug for the prevention and treatment of chronic hepatitis B.

2.
Immunology ; 172(2): 295-312, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38453210

ABSTRACT

Hyperactivation of the cyclic-GMP-AMP synthase (cGAS)-stimulator of interferon genes (STING) signalling pathway has been shown to be associated with the development of a variety of inflammatory diseases, and the discovery of an inhibitor of the cGAS-STING signalling pathway holds great promise in the therapeutic interventions. Epimedium flavonoid (EF), a major active ingredient isolated from the medicinal plant Epimedium, has been reported to have good anti-inflammatory activity, but its exact mechanism of action remains unclear. In the present study, we found that EF in mouse bone marrow-derived macrophages (BMDMs), THP-1 (Tohoku Hospital Pediatrics-1) as well as in human peripheral blood mononuclear cells (hPBMC) inhibited the activation of the cGAS-STING signalling pathway, which subsequently led to a decrease in the expression of type I interferon (IFN-ß, CXCL10 and ISG15) and pro-inflammatory cytokines (IL-6 and TNF-α). Mechanistically, EF does not affect STING oligomerization, but inhibits the formation of functional STING signalosome by attenuating the interaction of interferon regulatory factor 3 (IRF3) with STING and TANK-binding kinase 1 (TBK1). Importantly, in vivo experiments, EF has shown promising therapeutic effects on inflammatory diseases mediated by the cGAS-STING pathway, which include the agonist model induced by DMXAA stimulation, the autoimmune inflammatory disease model induced by three prime repair exonuclease 1 (Trex1) deficiency, and the non-alcoholic steatohepatitis (NASH) model induced by a pathogenic amino acid and choline deficiency diet (MCD). To summarize, our study suggests that EF is a potent potential inhibitor component of the cGAS-STING signalling pathway for the treatment of inflammatory diseases mediated by the cGAS-STING signalling pathway.


Subject(s)
Epimedium , Flavonoids , Membrane Proteins , Nucleotidyltransferases , Signal Transduction , Nucleotidyltransferases/metabolism , Membrane Proteins/metabolism , Animals , Signal Transduction/drug effects , Humans , Mice , Flavonoids/pharmacology , Epimedium/chemistry , Interferon Regulatory Factor-3/metabolism , Macrophages/metabolism , Macrophages/immunology , Macrophages/drug effects , Mice, Inbred C57BL , Cytokines/metabolism , THP-1 Cells , Protein Serine-Threonine Kinases/metabolism , Anti-Inflammatory Agents/pharmacology , Leukocytes, Mononuclear/metabolism , Leukocytes, Mononuclear/immunology , Leukocytes, Mononuclear/drug effects
3.
Gynecol Endocrinol ; 40(1): 2325000, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38477938

ABSTRACT

OBJECTIVE: To investigate the target and mechanism of action of Bushen Huoxue Recipe (BSHX) for the treatment of infertility in polycystic ovary syndrome (PCOS), to provide a basis for the development and clinical application of herbal compounds. METHODS: Prediction and validation of active ingredients and targets of BSHX for the treatment of PCOS by using network pharmacology-molecular docking technology. In an animal experiment, the rats were randomly divided into four groups (control group, model group, BSHX group, metformin group, n = 16 in each group), and letrozole combined with high-fat emulsion gavage was used to establish a PCOS rat model. Body weight, vaginal smears, and number of embryos were recorded for each group of rats. Hematoxylin-eosin (HE) staining was used to observe the morphological changes of ovarian and endometrial tissues, and an enzyme-linked immunosorbent assay (ELISA) was used to detect the serum inflammatory factor levels. Expression levels of transforming growth factor-ß (TGF-ß), transforming growth factor beta activated kinase 1 (TAK1), nuclear factor kappa-B (NF-κB), Vimentin, and E-cadherin proteins were measured by western blot (WB). RESULTS: Ninety active pharmaceutical ingredients were obtained from BSHX, involving 201 protein targets, of which 160 were potential therapeutic targets. The active ingredients of BSHX exhibited lower binding energy with tumor necrosis factor-α (TNF-α), TGF-ß, TAK1, and NF-κB protein receptors (< -5.0 kcal/mol). BSHX significantly reduced serum TNF-α levels in PCOS rats (p < .01), effectively regulated the estrous cycle, restored the pathological changes in the ovary and endometrium, improved the pregnancy rate, and increased the number of embryos. The results of WB suggested that BSHX can down-regulate protein expression levels of TGF-ß and NF-κB in endometrial tissue (p < .05), promote the expression level of E-cadherin protein (p < .001), intervene in the endometrial epithelial-mesenchymal transition (EMT) process. CONCLUSIONS: TGF-ß, TAK1, NF-κB, and TNF-α are important targets of BSHX for treating infertility in PCOS. BSHX improves the inflammatory state of PCOS, intervenes in the endometrial EMT process through the TGF-ß/NF-κB pathway, and restores endometrial pathological changes, further improving the pregnancy outcome in PCOS.


Subject(s)
Drugs, Chinese Herbal , Infertility , Polycystic Ovary Syndrome , Female , Humans , Animals , Pregnancy , Rats , NF-kappa B , Molecular Docking Simulation , Tumor Necrosis Factor-alpha , Transcription Factors , Cadherins , Endometrium , Epithelial-Mesenchymal Transition , Transforming Growth Factor beta , Transforming Growth Factors
4.
J Ethnopharmacol ; 321: 117406, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-37952733

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Liuweiwuling Tablet (LWWL) is a patented Chinese medicine approved by the Chinese National Medical Products Administration (NMPA). Clinically, it is used to treat a range of liver diseases that precede hepatocellular carcinoma (HCC), including hepatitis, liver fibrosis and cirrhosis. LWWL is hypothesized to inhibit the inflammatory transformation of HCC, which may have a positive impact on the prevention and treatment of HCC. However, its exact mechanism of action remains unknown. AIM OF THE STUDY: To investigate how LWWL is effective in the treatment of HCC and to validate the pathways involved in this process. MATERIALS AND METHODS: An in vivo model of HCC induced by diethylnitrosamine (DEN) was established to study the effect of LWWL on the development of HCC. The rat serum was analyzed for aspartate aminotransferase (AST), alanine aminotransferase (ALT), alkaline phosphatase (ALP), and gamma-glutamyl transpeptidase (γ-GT). The rat liver tissues were stained with hematoxylin and eosin (HE) and Masson's trichrome for pathological analysis. Rat liver tissue was subjected to transcriptome sequencing. Expression of inflammatory and liver fibrosis-related factors in bone marrow-derived macrophages (BMDMs) and LX-2 cells was detected by QRT-PCR, ELISA and Western blot (WB). The expression of apoptosis and stemness genes in HepG2 and Huh7 cells was assessed through flow cytometry and QRT-PCR. Transcriptomics, network pharmacology, WB, and QRT-PCR were employed to validate the mechanisms associated with the amelioration of HCC development by LWWL. RESULTS: LWWL significantly reduced the severity of hepatitis and liver fibrosis, the expression of tumor stemness genes, and the incidence of HCC. In addition, LWWL inhibited the release of inflammatory substances and nuclear accumulation of P65 protein in BMDMs as well as the conversion of LX-2 cells to fibroblasts. LWWL inhibited the proliferation of HepG2 and Huh7 cells, including the initiation of apoptosis and the reduction of stemness gene expression. Importantly, LWWL regulates the PI3K/AKT/NF-κB pathway, which affects hepatic inflammation and cancer progression. CONCLUSION: LWWL inhibited the occurrence and development of HCC by modulating the severity of hepatitis and liver fibrosis, indicating the potential clinical relevance of LWWL in preventing and treating HCC.


Subject(s)
Carcinoma, Hepatocellular , Hepatitis , Liver Neoplasms , Rats , Animals , Carcinoma, Hepatocellular/metabolism , NF-kappa B/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Liver Neoplasms/metabolism , Signal Transduction , Liver Cirrhosis/metabolism , Tablets
5.
J Ethnopharmacol ; 319(Pt 3): 117320, 2024 Jan 30.
Article in English | MEDLINE | ID: mdl-37838297

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: A combination of 6 different Chinese herbs known as Erchen decoction (ECD) has been traditionally used to treat digestive tract diseases and found to have a protective effect against nonalcoholic fatty liver disease (NAFLD). Despite its efficacy in treating NAFLD, the precise molecular mechanism by which Erchen Decoction regulated iron ion metabolism to prevent disease progression remained poorly understood. AIM OF STUDY: Our study attempted to confirm the specific mechanism of ECD in reducing lipid and iron in NAFLD from the perspective of regulating the expression of Caveolin-1 (Cav-1). STUDY DESIGN: In our study, the protective effect of ECD was investigated in Palmitic Acid + Oleic Acid-induced hepatocyte NAFLD model and high-fat diet-induced mice NAFLD model. To investigate the impact of Erchen Decoction (ECD) on lipid metabolism and iron metabolism via mediating Cav-1 in vitro, Cav-1 knockdown cell lines were established using lentivirus-mediated transfection techniques. MATERIALS AND METHODS: We constructed NAFLD model by feeding with high-fat diet for 12 weeks in vivo and Palmitic Acid + Oleic Acid treatment for 24 h in vitro. The regulation of Lipid and iron metabolism results by ECD were detected by serological diagnosis, immunofluorescent and immunohistochemical staining, and western blotting. The binding ability of 6 small molecules of ECD to Cav-1 was analyzed by molecular docking. RESULTS: We demonstrated that ECD alleviated the progression of NAFLD by inhibiting lipid accumulation, nitrogen oxygen stress, and iron accumulation in vivo and in vitro experiments. Furthermore, ECD inhibited lipid and iron accumulation in liver by up-regulating the expression of Cav-1, which indicated that Cav-1 was an important target for ECD to exert its curative effect. CONCLUSIONS: In summary, our study demonstrated that ECD alleviated the accumulation of lipid and iron in NAFLD through promoting the expression of Cav-1, and ECD might serve as a novel Cav-1 agonist to treat NAFLD.


Subject(s)
Iron Overload , Non-alcoholic Fatty Liver Disease , Mice , Animals , Non-alcoholic Fatty Liver Disease/drug therapy , Non-alcoholic Fatty Liver Disease/metabolism , Palmitic Acid/toxicity , Caveolin 1/genetics , Oleic Acid/pharmacology , Molecular Docking Simulation , Liver , Lipid Metabolism , Iron Overload/drug therapy , Iron/metabolism , Diet, High-Fat/adverse effects , Mice, Inbred C57BL
6.
Chin J Nat Med ; 21(12): 916-926, 2023 Dec.
Article in English | MEDLINE | ID: mdl-38143105

ABSTRACT

Natural products are essential sources of antitumor drugs. One such molecule, ß-elemene, is a potent antitumor compound extracted from Curcuma wenyujin. In the present investigation, a series of novel 13,14-disubstituted nitric oxide (NO)-donor ß-elemene derivatives were designed, with ß-elemene as the foundational compound, and subsequently synthesized to evaluate their therapeutic potential against leukemia. Notably, the derivative labeled as compound 13d demonstrated a potent anti-proliferative activity against the K562 cell line, with a high NO release. In vivo studies indicated that compound 13d could effectively inhibit tumor growth, exhibiting no discernible toxic manifestations. Specifically, a significant tumor growth inhibition rate of 62.9% was observed in the K562 xenograft tumor mouse model. The accumulated data propound the potential therapeutic application of compound 13d in the management of leukemia.


Subject(s)
Leukemia , Sesquiterpenes , Humans , Mice , Animals , Cell Line, Tumor , Nitric Oxide Donors/pharmacology , Sesquiterpenes/pharmacology , Leukemia/drug therapy , Biological Assay , Cell Proliferation
7.
Food Funct ; 14(23): 10265-10285, 2023 Nov 27.
Article in English | MEDLINE | ID: mdl-37929791

ABSTRACT

Tree peony is cultivated worldwide in large quantities due to its exceptional ornamental and medicinal value. In recent years, the edible value of tree peony seed oil (TPSO) has garnered significant attention for its high content of alpha-linolenic acid (ALA, >40%) and other beneficial minor components, including phytosterols, tocopherols, squalene, and phenolics. This review provides a systematic summary of the nutritional composition and health-promoting effects of TPSO, with a specific focus on its digestion, absorption, bioavailability, and encapsulation status. Additionally, information on techniques for extracting and identifying adulteration of TPSO, as well as its commercial applications and regulated policies, is included. Thanks to its unique nutrients, TPSO offers a wide range of health benefits, such as hypolipidemic, anti-obesity, cholesterol-lowering, antioxidant and hypoglycemic activities, and regulation of the intestinal microbiota. Consequently, TPSO shows promising potential in the food and cosmetic industries and should be cultivated in more countries. However, the application of TPSO is hindered by its low bioavailability, poor stability, and limited water dispersibility. Therefore, it is crucial to develop effective delivery strategies, such as microencapsulation and emulsion, to overcome these limitations. In conclusion, this review provides a comprehensive understanding of the nutritional value of TPSO and emphasizes the need for further research on its nutrition and product development.


Subject(s)
Paeonia , Biological Availability , Seeds , Antioxidants , Plant Oils
8.
Gynecol Endocrinol ; 39(1): 2260500, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37849277

ABSTRACT

OBJECTIVE: To investigate the effect of Bushen Huoxue Recipe (BSHXR) on serum metabolomics in polycystic ovary syndrome rat (PCOSR). METHODS: In our study, twenty-four 6-week-old Sprague-Dawley (SD) female rats were randomly divided into three groups: treatment group, model group and blank group. The blank group and other groups were gavaged in different ways each morning, and the rats were treated with normal saline or BSHXR containing liquid each afternoon. Liquid chromatography-mass spectrometry (LC-MS) was employed to study serum metabolites in the treatment group after the study as well as in the model and blank groups. RESULTS: There was a tendency to normalize the histomorphology of ovarian pathology and the abnormal sex hormone level of PCOSR was significantly improved after BSHXR treatment. The level of serum metabolites was greatly changed in PCOSR treated with the BSHXR. We identified 32 metabolic targets of BSHXR in PCOSR using LC-MS, and further revealed BSHXR targeted five major metabolic pathway: retrograde endocannabinoid signaling, taurine and hypotaurine metabolism, glycerophospholipid metabolism, primary bile acid biosynthesis, arginine and proline metabolism. Conclusion: Our study found that BSHXR plays a role in the treatment of PCOS by regulating key metabolic pathways in the PCOSR.


Subject(s)
Drugs, Chinese Herbal , Polycystic Ovary Syndrome , Humans , Rats , Female , Animals , Rats, Sprague-Dawley , Drugs, Chinese Herbal/pharmacology , Drugs, Chinese Herbal/therapeutic use
9.
BMC Genomics ; 24(1): 554, 2023 Sep 19.
Article in English | MEDLINE | ID: mdl-37726686

ABSTRACT

BACKGROUND: The Inonotus obliquus mushroom, a wondrous fungus boasting edible and medicinal qualities, has been widely used as a folk medicine and shown to have many potential pharmacological secondary metabolites. The purpose of this study was to supply a global landscape of genome-based integrated omic analysis of the fungus under lab-growth conditions. RESULTS: This study presented a genome with high accuracy and completeness using the Pacbio Sequel II third-generation sequencing method. The de novo assembled fungal genome was 36.13 Mb, and contained 8352 predicted protein-coding genes, of which 365 carbohydrate-active enzyme (CAZyme)-coding genes and 19 biosynthetic gene clusters (BCGs) for secondary metabolites were identified. Comparative transcriptomic and proteomic analysis revealed a global view of differential metabolic change between seed and fermentation culture, and demonstrated positive correlations between transcription and expression levels of 157 differentially expressed genes involved in the metabolism of amino acids, fatty acids, secondary metabolites, antioxidant and immune responses. Facilitated by the widely targeted metabolomic approach, a total of 307 secondary substances were identified and quantified, with a significant increase in the production of antioxidant polyphenols. CONCLUSION: This study provided the comprehensive analysis of the fungus Inonotus obliquus, and supplied fundamental information for further screening of promising target metabolites and exploring the link between the genome and metabolites.


Subject(s)
Agaricales , Agaricales/genetics , Antioxidants , Proteomics , Inonotus
10.
Phytomedicine ; 120: 155036, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37643530

ABSTRACT

BACKGROUND: Obesity has become a global public health problem. Zexie decoction (ZXT) is a classic formula from Synopsis of the Golden Chamber. However, the long-term effect of ZXT in lipid accumulation remain unclear. PURPOSE: This study aims to investigate the effect of ZXT on aging, lipid metabolism and oxidative stress. METHODS: Different concentration of ZXT was administered to Caenorhabditis elegans (C. elegans) cultured in NGM or the high glucose nematode growth media (GNGM). The lifespan, heat stress resistance, lipid accumulation and related mRNA expression of the worms were examined. Oil Red staining and triglyceride were used to evaluated the lipid accumulation. Nhr-49, fat-5/fat-7, fat-5/fat-6 or skn-1 knockout mutants were used to clarify the effect on lipid metabolism of ZXT. GFP-binding mutants were used to observe the changes in protein expression. RESULTS: ZXT improved the survival rate of C. elegans in lifespan test and heat stress test. ZXT also reduced lipid accumulation in C. elegans and significantly changed the expression of fatty acid synthesis related genes and lipid metabolism related genes. In addition, ZXT-treated C. elegans showed a higher expression of anti-oxidative protein, and reduced the expression of oxidative stress and mitochondrial dysfunction marker. However, when skn-1 was knockdown, ZXT no longer had the effect of maintaining the mitochondria membrane potential and lipid lowering but still effectively decreased the O2·- induced by high glucose. CONCLUSIONS: ZXT reduced fat accumulation by regulating lipid metabolism via multiple targets and enhanced stress resistance by its antioxidant effect in C. elegans.


Subject(s)
Caenorhabditis elegans , Oxidative Stress , Animals , Aging , Glucose , Lipids
11.
Ann Clin Transl Neurol ; 10(7): 1209-1218, 2023 07.
Article in English | MEDLINE | ID: mdl-37278248

ABSTRACT

OBJECTIVE: To assess the proportion of clinically diagnosed MM2-type sporadic Creutzfeldt-Jakob disease (sCJD) in a Chinese cohort, describe the clinical features of MM2-cortical (MM2C) and MM2-thalamic (MM2T) type sCJD to improve the early detection of MM2-type sCJD. METHODS: A total of 209 patients with sCJD admitted to the Xuanwu Hospital between February 2012 and August 2022 were reviewed. The patients were classified into probable MM2C, MM2T-type sCJD, and other types of sCJD according to current clinical diagnostic criteria. Clinical and ancillary data were compared between the groups. RESULTS: Fifty-one (24.4%) patients were clinically diagnosed with MM2-type sCJD, of which 44 were diagnosed with MM2C-type sCJD and 7 with MM2T-type sCJD. In the absence of RT-QuIC, 27 (61.3%) patients of MM2C-type sCJD did not meet the US CDC sCJD criteria for possible sCJD on admission, even though the mean period from onset to admission was 6.0 months. However, all of these patients had cortical hyperintensity on DWI. Compared to the other types of sCJD, MM2C-type sCJD was associated with slower disease progression and the absence of the typical clinical features of sCJD; the MM2T-type sCJD group had a higher proportion of males, earlier age of onset, longer duration of disease, and a higher incidence of bilateral thalamic hypometabolism/hypoperfusion. INTERPRETATION: In the absence of multiple typical sCJD symptoms within 6 months, the presence of cortical hyperintensity on DWI should raise concerns for MM2C-type sCJD after excluding other etiologies. Bilateral thalamic hypometabolism/hypoperfusion may be more helpful in the clinical diagnosis of MM2T-type sCJD.


Subject(s)
Creutzfeldt-Jakob Syndrome , Humans , Male , Asian People , Creutzfeldt-Jakob Syndrome/diagnosis , Creutzfeldt-Jakob Syndrome/diagnostic imaging , Early Diagnosis , Thalamus/diagnostic imaging , Diffusion Magnetic Resonance Imaging
12.
Biomed Pharmacother ; 164: 114902, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37209628

ABSTRACT

BACKGROUND: Intestinal mucositis (IM) is characterized by damage to the intestinal mucosa resulting from inhibition of epithelial cell division and loss of renewal capacity following anticancer chemotherapy and radiotherapy. Cytarabine (Ara-C), the main chemotherapy drug for the treatment of leukemia and lymphoma, is a frequent cause of IM. Guiqi Baizhu prescription (GQBZP) is a traditional Chinese medicine with anti-cancer and anti-inflammatory effects. PURPOSE: To determine if GQBZP can ameliorate Ara-C induced IM and identify and characterize the pharmacologic and pharmacodynamic mechanisms. STUDY DESIGN AND METHODS: IM was induced in mice with Ara-C and concurrently treated with orally administered GQBZP. Body weight and food intake was monitored, with HE staining to calculate ileal histomorphometric scoring and villus length/crypt depth. Immunoblotting was used to detect intestinal tissue inflammatory factors. M1 macrophages (M1) were labeled with CD86 by flow cytometry and iNOS + F4/80 by immunofluorescence. Virtual screening was used to find potentially active compounds in GQBZP that targeted JAK2. In vitro, RAW264.7 cells were skewed to M1 macrophage polarization by lipopolysaccharide (LPS) and interferon-γ (INF-γ) and treated orally with GQBZP or potential active compounds. M1 was labeled with CD86 by flow cytometry and iNOS by immunofluorescence. ELISA was used to detect inflammatory factor expression. Active compounds against JAK2, p-JAK2, STAT1 and p-STAT1 were identified by western blotting and HCS fluorescence. Molecular dynamics simulations and pharmacokinetic predictions were carried out on representative active compounds. RESULTS: Experimental results with mice in vivo suggest that GQBZP significantly attenuated Ara-C-induced ileal damage and release of pro-inflammatory factors by inhibiting macrophage polarization to M1. Molecular docking was used to identify potentially active compounds in GQBZP that targeted JAK2, a key factor in macrophage polarization to M1. By examining the main components of each herb and applying Lipinski's rules, ten potentially active compounds were identified. In vitro experimental results suggested that all 10 compounds of GQBZP targeted JAK2 and could inhibit M1 polarization in RAW264.7 cells treated with LPS and INF-γ. Among them, acridine and senkyunolide A down-regulated the expression of JAK2 and STAT1. MD simulations revealed that acridine and senkyunolide A were stable in the active site of JAK2 and exhibited good interactions with the surrounding amino acids. CONCLUSIONS: GQBZP can ameliorate Ara-C-induced IM by reducing macrophage polarization to M1, and acridine and senkyunolide A are representative active compounds in GQBZP that target JAK2 to inhibit M1 polarization. Targeting JAK2 to regulate M1 polarization may be a valuable therapeutic strategy for IM.


Subject(s)
Mucositis , Mice , Animals , Mucositis/pathology , Cytarabine/pharmacology , Lipopolysaccharides/pharmacology , Lipopolysaccharides/metabolism , Molecular Docking Simulation , Macrophages/metabolism , Interferon-gamma/metabolism
13.
Gynecol Endocrinol ; 39(1): 2210232, 2023 May 05.
Article in English | MEDLINE | ID: mdl-37187204

ABSTRACT

OBJECTIVE: To investigate the potential molecular mechanism of traditional Chinese medicine Guizhi Fuling Wan (GZFLW) inhibiting granulosa cells (GCs) autophagy in polycystic ovary syndrome (PCOS). METHODS: Control GCs and model GCs were cultured and treated with blank serum or GZFLW-containing serum. The levels of H19 and miR-29b-3p in GCs were detected using qRT-PCR, target genes of miR-29b-3p were identified using luciferase assay. The protein expressions of Phosphatase and tensin homolog (PTEN), Matrix Metalloproteinase (MMP)-2, and Bax were measured using western blot. The level of autophagy was detected via MDC staining, the degree of autophagosomes and autophagic polymers was observed using dual fluorescence-tagged mRFP-eGFP-LC3. RESULTS: GZFLW intervention reduced the expression of autophagy-related proteins PTEN, MMP-2 and Bax, by upregulating the expression of miR-29b-3p and downregulated the expression of H19 (p < .05 or p < .01). The number of autophagosomes and autophagy polymers was significantly decreased by GZFLW treatment. However, the inhibition of miR-29b-3p and overexpression of H19 induced a significant increase in the number of autophagosomes and autophagic polymers, which attenuated the inhibitory effect of GZFLW on autophagy (p < .05 or p < .01). In addition, inhibition of miR-29b-3p or overexpression of H19 can attenuate the effect of GZFLW on the expression of PTEN, MMP-2 and Bax proteins (p < .05 or p < .01). CONCLUSION: Our study found that GZFLW inhibits autophagy in PCOS GCs via H19/miR-29b-3p pathway.


Subject(s)
MicroRNAs , Polycystic Ovary Syndrome , Animals , Female , Mice , Apoptosis , Autophagy/genetics , bcl-2-Associated X Protein , Cell Proliferation/genetics , Granulosa Cells/metabolism , Matrix Metalloproteinase 2/genetics , Matrix Metalloproteinase 2/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism , Polycystic Ovary Syndrome/genetics , Polycystic Ovary Syndrome/metabolism
14.
J Ethnopharmacol ; 313: 116559, 2023 Sep 15.
Article in English | MEDLINE | ID: mdl-37116730

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Exocarpium Citri grandis (ECG, Huajuhong in Chinese), the epicarp of C. grandis 'Tomentosa', has been used for hundreds of years as an anti-inflammatory, expectorant, hypoglycemic, and lipid-lowering medication in China. Nevertheless, there have been few papers that have explored the mechanism behind ECG's hypolipidemic characteristics from the perspective of treating nonalcoholic fatty liver disease (NAFLD). AIM OF STUDY: The purpose of our study was to confirm the therapeutic and preventative effects of ECG in NAFLD by regulating lipid accumulation and iron metabolism, and to explore the specific mechanism of ECG in enhancing hepatic iron transport and excretion capabilities. STUDY DESIGN: We constructed a NAFLD model by feeding male C57BL/6 J mice with a high-fat diet for 12 weeks. Mice were gavaged with ECG beginning in the seventh week of modeling, and three dosage gradients were established: low dose group (2.5 g/kg/d), medium dose group (5 g/kg/d) y, and high dose group (10 g/kg/d) until the end of model construction in week 12. MATERIALS AND METHODS: We used network pharmacology to analyze the relationship between ECG and NAFLD. In addition, we constructed a nonalcoholic fatty liver disease model by feeding male C57BL/6 J mice a high-fat diet for 12 weeks. Finally, lipid accumulation, iron accumulation, inflammation and oxidative stress were evaluated by serological index detection, histological detection, immunofluorescent and immunohistochemical staining, and western blotting. RESULTS: Network pharmacology confirmed the treatment effect of ECG in NAFLD. Three active components of ECG, including Naringenin, Naringin and Neohesperidin, were detected by UHPLC-HRMS analysis. The results of serum TC, TG, LDL concentration, HE staining, Oil red staining and Nile red staining demonstrated that ECG could improve lipid metabolism disorders. The results of serum iron concentration, liver tissue iron concentration, iron metabolism-related proteins Ferritin light chain, Ferroportin1, Transferrin receptor, and Transferrin demonstrated that ECG improved the iron transport and storage capacities of hepatic cells. CONCLUSIONS: Our results demonstrated that ECG relieved liver injury by inhibiting lipid accumulation and iron accumulation in NAFLD.


Subject(s)
Iron Metabolism Disorders , Non-alcoholic Fatty Liver Disease , Mice , Male , Animals , Non-alcoholic Fatty Liver Disease/metabolism , Mice, Inbred C57BL , Liver , Iron Metabolism Disorders/metabolism , Iron Metabolism Disorders/pathology , Iron/metabolism , Lipids/pharmacology , Lipid Metabolism , Diet, High-Fat/adverse effects
15.
Drug Dev Res ; 84(4): 718-735, 2023 Jun.
Article in English | MEDLINE | ID: mdl-36988106

ABSTRACT

This study aimed to design and synthesize active hybrids of ß-elemene and nitric oxide (NO) donor pharmacophore as potential agents for treating leukemia. Derivatives reported herein exerted better inhibitory effects against human chronic myeloid leukemia K562 cells compared to ß-elemene (IC50 > 100 µM). The most potent compound 18f showed an IC50 value of 0.53 µM against K562 cells, as well as a high NO release level in vitro. In the K562 xenograft tumor mice model, compound 18f effectively inhibited the growth of the tumor, with a significant inhibition rate of 73.18%. After treatment with compound 18f, the body weight of mice did not decrease, indicating that it possessed good safety profile. All these proved that compound 18f was an excellent potential agent against leukemia.


Subject(s)
Antineoplastic Agents , Leukemia , Sesquiterpenes , Humans , Animals , Mice , Nitric Oxide Donors/pharmacology , Nitric Oxide Donors/therapeutic use , Sesquiterpenes/pharmacology , Sesquiterpenes/therapeutic use , K562 Cells , Leukemia/drug therapy , Cell Proliferation , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Cell Line, Tumor , Nitric Oxide , Apoptosis
16.
Article in English | MEDLINE | ID: mdl-36673722

ABSTRACT

Farmland heavy metal pollution-caused by both human activity and natural processes-is a major global issue. In the current study, principal component analysis (PCA), cluster analysis (CA), rare earth elements and yttrium (REY) analysis, and isotope fingerprinting were combined to identify sources of heavy metal pollution in soil from different farmland types in the upper-middle area of the Yangtze River. The concentrations of Zn and Cu were found to be higher in the vegetable base and tea plantation soil compared with their concentrations in the orangery soil. On the other hand, greater accumulation of Cd and Pb was observed in the orangery soil versus the vegetable base and tea plantation soils. Influenced by the type of bedrock, REY was significantly enriched in the orangery soil and depleted in the vegetable base soil, as compared with the tea plantation soil. The Pb isotopic compositions of the tea plantation (1.173-1.193 for 206Pb/207Pb and 2.070-2.110 for 208Pb/206Pb) and vegetable base (1.181-1.217 for 206Pb/207Pb and 2.052-2.116 for 208Pb/206Pb) soils were comparable to those of coal combustion soil. The compositions of 206Pb/207Pb (1.149-1.170) and 208Pb/206Pb (2.121-2.143) in the orangery soil fell between those observed in soils obtained from coal combustion and ore smelting sites. Using the IsoSource model, the atmospheric Pb contributions of the vegetable base, tea plantation, and orangery soils were calculated to be 66.6%, 90.1%, and 82.0%, respectively, and the bedrock contributions of Pb were calculated to be 33.3%, 9.90%, and 18.1%, respectively. Based on the PCA, CA, and REY results, as well as the Pb isotope model, it appears that heavy metals in the orangery soil may be derived from atmospheric deposition and bedrock weathering, while heavy metals in the vegetable base and tea plantation soils may be derived from mining and the use of fertilizer.


Subject(s)
Metals, Heavy , Metals, Rare Earth , Soil Pollutants , Humans , Soil , Farms , Yttrium/analysis , Lead/analysis , Rivers , Environmental Monitoring/methods , Soil Pollutants/analysis , Metals, Heavy/analysis , Metals, Rare Earth/analysis , Vegetables , Isotopes/analysis , Coal/analysis , Tea , China , Risk Assessment
17.
Phytomedicine ; 109: 154605, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36610133

ABSTRACT

BACKGROUND: Intestinal mucositis (IM) is one of the common side effects of chemotherapy with Cytarabine (Ara-C) and contributes to the major dose-limiting factor of chemotherapy, while the effective drug for IM is little. Astragalus, one of the main active components extrated from the roots of Astragalus membranaceus (AS-IV), is a common Chinese herbal medicine used in gastrointestinal diseases. However, the effect and mechanism of AS-IV on IM is unclear. Accumulating evidence suggests that M1 macrophages play a pivotal role in IM progression. PURPOSE: The purpose of the study was to explore the protection of AS-IV and its potential molecular mechanism on intestinal mucositis injury induced by Ara-C. METHOD: The protective effect of AS-IV was investigated in LPS-induced macrophages and Ara-C-induced intestinal mucositis mouse model. H&E, immunofluorescence and western blotting were used to evaluate the damage in different doses of Ara-C. Silencing AKT targeted by siRNA was performed to explore the potential mechanisms regulating macrophage polarization effect of Ara-C, which was investigated by CCK-8, immunofluorescence and western blotting. Flow cytometry, immunofluorescence and Western blotting were used to detect macrophage surface marker proteins and inflammatory genes to explore the potential molecular mechanism of AS-IV regulating macrophage polarization. RESULTS: The Cytarabine intervention at dose of 100mg/kg significantly induced IM in mice, with the ileum the most obvious site of injury, accompanied by decreased intestinal barrier, intestinal macrophage polarization to M1 and inflammation response. The administration of AS-IV improved weight loss, food intake, ileal morphological damage, intestinal barrier destruction and inflammatory factor release in mice induced by Ara-c, and also suppressed macrophage polarization to M1, regulating in phenotypic changes in macrophages. In vitro, the expression of M1 macrophage surface marker protein was markedly decreased in LPS-induced macrophages after silencing AKT. Similarly, the western blotting of intestinal tissues and molecular docking indicated that the key mechanisms of AS-IV were remodel AKT signaling, and finally regulating M1 macrophages and decrease inflammation response. CONCLUSION: Our study highlights that AS-IV exerts protective effect in Ara-C-induced IM through inhibit polarization to M1 macrophages based on AKT, and AS-IV may serve as a novel AKT inhibitor to counteract the intestinal adverse effects of chemotherapeutic agents.


Subject(s)
Cytarabine , Mucositis , Proto-Oncogene Proteins c-akt , Animals , Mice , Cytarabine/adverse effects , Inflammation/drug therapy , Lipopolysaccharides , Macrophages , Membrane Proteins/metabolism , Molecular Docking Simulation , Mucositis/chemically induced , Mucositis/drug therapy , Mucositis/metabolism , Proto-Oncogene Proteins c-akt/metabolism
18.
Article in English | MEDLINE | ID: mdl-35958922

ABSTRACT

Caerin 1.9 is a natural peptide derived from the skin secretions of the Australian tree frog (Litoria) with broad-spectrum antimicrobial and anticancer bioactivity. It improves the efficacy of a therapeutic vaccine and immune checkpoint inhibitor therapy when injected intratumorally and inhibits TC-1 tumor growth when applied topically through intact skin in a TC-1 murine tumor model. This paper investigated the pharmaceutical kinetic profile, the tissue distribution, and the acute safety investigation of Caerin 1.9 peptide in Sprague Dawley (SD) rats. The results showed that subcutaneous injection of Caerin 1.9 at 100 mg/kg is safe and does not cause mortality or organ malfunction in the recipient rats. For the consecutive injection of F3 at 10 mg/kg, the peak concentration (C max) of F3 displayed at 1 hr after injection in male rats was 591 ng/mL, the average drug retention time was 0.807 hr, T 1/2 was 4.58 hr, and AUC0-last was 1890 h × ng/mL. In female rats, C max was 256 ng/mL, with an average drug retention time of 2.96 hr, T 1/2 of 1.33 hr, and AUC0-last of 740 h × ng/mL. The results showed that the concentration of Caerin 1.9 in the peripheral blood peaked at 1 hour. As injected concentration increased, T 1/2 extended, and C max, AUC0-last, and volume of distribution at a steady state all increased. After 14 days of repeated subcutaneous injection at 10.0 mg/kg, no accumulation of Caerin 1.9 in plasma was observed. The results of tissue distribution showed that the Caerin 1.9 is below the LC-MS/MS detection threshold at a minimum concentration of 40 ng/g. In conclusion, Caerin 1.9 is well tolerated in rats and could be used with current immunotherapies for better management of solid tumors and genital warts.

19.
Neuroimage Clin ; 35: 103086, 2022.
Article in English | MEDLINE | ID: mdl-35738080

ABSTRACT

BACKGROUND: Insomnia and thalamic involvement were frequently reported in patients with genetic Creutzfeldt-Jakob disease (gCJD) with E200K mutations, suggesting E200K might have discrepancy with typical sporadic CJD (sCJD). The study aimed to explore the clinical and neuroimage characteristics of genetic E200K CJD patients by comprehensive neuroimage analysis. METHODS: Six patients with gCJD carried E200K mutation on Prion Protein (PRNP) gene, 13 patients with sporadic CJD, and 22 age- and sex-matched normal controls were enrolled in the study. All participants completed a hybrid positron emission tomography/magnetic resonance imaging (PET/MRI) examination. Signal intensity on diffusion-weighted imaging (DWI) and metabolism on PET were visually rating analyzed, statistical parameter mapping analysis was performed on PET and 3D-T1 images. Clinical and imaging characteristics were compared between the E200K, sCJD, and control groups. RESULTS: There was no group difference in age or gender among the E200K, sCJD, and control groups. Insomnia was a primary complaint in patients with E200K gCJD (4/2 versus 1/12, p = 0.007). Hyperintensity on DWI and hypometabolism on PET of the thalamus were observed during visual rating analysis of images in patients with E200K gCJD. Gray matter atrophy (uncorrected p < 0.001) and hypometabolism (uncorrected p < 0.001) of the thalamus were more pronounced in patients with E200K gCJD. CONCLUSION: The clinical and imaging characteristics of patients with gCJD with PRNP E200K mutations manifested as a thalamic-insomnia phenotype. PET is a sensitive approach to help identify the functional changes in the thalamus in prion disease.


Subject(s)
Creutzfeldt-Jakob Syndrome , Prions , Sleep Initiation and Maintenance Disorders , Creutzfeldt-Jakob Syndrome/diagnostic imaging , Creutzfeldt-Jakob Syndrome/genetics , Encephalopathy, Bovine Spongiform , Humans , Magnetic Resonance Imaging , Mutation/genetics , Phenotype , Positron-Emission Tomography , Prions/genetics , Thalamus/diagnostic imaging , Thalamus/pathology
20.
mBio ; 13(3): e0032322, 2022 06 28.
Article in English | MEDLINE | ID: mdl-35491853

ABSTRACT

Cellulose is the most abundant polysaccharide in plant biomass and an important precursor of soil organic matter formation. Fungi play a key role in carbon cycling dynamics because they tend to decompose recalcitrant materials. Here, we applied [12C]cellulose and [13C]cellulose to distinguish the effects of application of compost, nitrogen-phosphorus-potassium (NPK) fertilizer, and no fertilizer (control) for 27 years upon cellulose decomposition via RNA-based stable isotope probing (RNA-SIP). The loss ratio of added cellulose C in compost soil was 67.6 to 106.7% higher than in NPK and control soils during their 20-day incubation. Dothideomycetes (mainly members of the genus Cryptococcus) dominated cellulose utilization in compost soil, whereas the copiotrophic Sordariomycetes were more abundant in NPK and unfertilized soils. Compared with NPK and control soils, compost application increased the diversity of 13C-assimilating fungi. The 13C-labeled fungal communities in compost soil were more phylogenetically clustered and exhibited greater species relatedness than those in NPK and control soils, perhaps because of stringent filtering of narrow-spectrum organic resources and biological invasion originating from added compost. These changes led to an augmented decomposition capacity of fungal species for cellulose-rich substrates and reduced cellulose C sequestration efficiency. The RNA-SIP technique is more sensitive to responses of fungi to altered soil resource availability than DNA-SIP. Overall, long-term compost application modified fungal community composition and promoted fungal diversity and phylogenetic relatedness, accelerating the decomposition of substrate cellulose in soil. This work also highlights the RNA-SIP technique's value for comprehensively assessing the contributions of active fungi to the substrate decomposition process. IMPORTANCE Cellulose is a very rich component in plant biomass and an important precursor of soil organic matter formation. Fungal communities are known to be important drivers of organic carbon accumulation in arable soils. However, current understanding of responses of fungal species to cellulose amendment and the contributions of active fungi to substrate decomposition process is still very superficial. Here, we established a [13C]cellulose microcosm experiment with soils subjected to long-term application of compost, nitrogen-phosphorus-potassium (NPK) fertilizer, and no fertilizer (control). The novel 13C-RNA-SIP technique with subsequent high-throughput sequencing was used to investigate the linkages between active fungal taxa and cellulose decomposition. Our study demonstrated that Dothideomycetes dominated cellulose utilization in compost soil, whereas the copiotrophic Sordariomycetes were more enriched in both NPK and unfertilized soils. We also found that the compost amendment promoted fungal diversity and phylogenetic relatedness and strengthened the decomposition capacity of fungi for cellulose-rich substrates by enhancing synergistic interactions, thereby reducing cellulose C sequestration efficiency. Overall, our research has implications for our understanding of the role of active fungi in cellulose C transformation in soils undergoing different types of long-term nutrient management.


Subject(s)
Composting , Mycobiome , Carbon , Cellulose , Fertilizers/analysis , Isotopes/analysis , Nitrogen , Phosphorus , Phylogeny , Potassium , RNA , Soil/chemistry , Soil Microbiology
SELECTION OF CITATIONS
SEARCH DETAIL