Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Vaccine ; 41(42): 6379-6390, 2023 10 06.
Article in English | MEDLINE | ID: mdl-37704497

ABSTRACT

Porcine epidemic diarrhea virus (PEDV) is a main cause of severe enteric disease in piglets, leading to millions of dollars lost annually in the global pig industry. Parenteral vaccination is limited in generating sufficient mucosal immunity, which is crucial for early defense against PEDV. Here, we orally administered ginseng stem-leaf saponins (GSLS) to mice before parenteral vaccination and found that GSLS significantly enhanced the phagocytosis of dendritic cells, promoted the activities of CD4+ T cells and increased PEDV-specific IgA antibodies in the intestinal mucosa. Transcriptomic results showed that the altered genes following GSLS treatment were mostly related to the immune response and metabolism. In addition, integrated analysis of the transcriptome and metabolome revealed that the mechanism by which GSLS enhances mucosal immunity may be associated with progesterone-related pathways. Further studies are needed to explore the detailed molecular mechanisms.


Subject(s)
Coronavirus Infections , Panax , Porcine epidemic diarrhea virus , Saponins , Swine Diseases , Animals , Swine , Mice , Immunity, Mucosal , Transcriptome , Saponins/pharmacology , Vaccination , Plant Leaves , Coronavirus Infections/prevention & control
2.
Hortic Res ; 7(1): 128, 2020.
Article in English | MEDLINE | ID: mdl-32821411

ABSTRACT

Sponge gourd (Luffa cylindrica) is an important cultivated vegetable and medicinal plant in the family Cucurbitaceae. In this study, a draft genome sequence of the sponge gourd inbred line P93075 was analyzed. Using Illumina, PacBio, and 10× Genomics sequencing techniques as well as new assembly techniques such as FALCON and chromatin interaction mapping (Hi-C), a chromosome-scale genome of approximately 656.19 Mb, with an N50 scaffold length of 48.76 Mb, was generated. From this assembly, 25,508 protein-coding gene loci were identified, and 63.81% of the whole-genome consisted of transposable elements, which are major contributors to the expansion of the sponge gourd genome. According to a phylogenetic analysis of conserved genes, the sponge gourd lineage diverged from the bitter gourd lineage approximately 41.6 million years ago. Additionally, many genes that respond to biotic and abiotic stresses were found to be lineage specific or expanded in the sponge gourd genome, as demonstrated by the presence of 462 NBS-LRR genes, a much greater number than are found in the genomes of other cucurbit species; these results are consistent with the high stress resistance of sponge gourd. Collectively, our study provides insights into genome evolution and serves as a valuable reference for the genetic improvement of sponge gourd.

3.
J Agric Food Chem ; 68(36): 9690-9696, 2020 Sep 09.
Article in English | MEDLINE | ID: mdl-32794755

ABSTRACT

Pumpkins (Cucurbita moschata; Cucurbitaceae) are the rich source of nutrients and valued for their biologically active substances to be used for the treatment of several diseases. The contents, composition, and conformation of starch are the significant quality traits of C. moschata. Two germplasms were targeted for analysis regarding the taste difference. Results indicated that the total starch contents and amylose/amylopectin ratio were high in CMO-X as compared to CMO-E during each fruit development stage. Scanning electron microscopy and transmission electron microscopy observations revealed that smooth surface starch granules fused together to enhance the starch accumulation. For a comparison of fruit development in CMO-E and CMO-X, the putative pathway for starch metabolism was developed and homologs were identified for each key gene involved in the pathway. GBSS and SBE were correlated with the difference in the amylose/amylopectin ratio of CMO-E and CMO-X. Conclusively, the developmental regulation of genes associated with starch accumulation can be considered as an important factor for the determination of fruit quality.


Subject(s)
Cucurbita/chemistry , Fruit/growth & development , Plant Extracts/chemistry , Starch/chemistry , Cucurbita/growth & development , Fruit/chemistry
4.
J Agric Food Chem ; 67(23): 6672-6682, 2019 Jun 12.
Article in English | MEDLINE | ID: mdl-31117493

ABSTRACT

To investigate the effects of grafting on non-volatile metabolites in tea, non-targeted metabolomic analyses of fresh leaves were performed on the basis of ultra-high-performance liquid chromatography quadrupole time-of-flight tandem mass spectrometry (UHPLC-QTOF/MS). One non-grafted YingHong No. 9 and four grafted tea [grafting scion YingHong No. 9 on four different rootstocks, BaiMao No. 2 (BM2), BaiYeDanCong (BY), HeiYeShuiXian (HY), and WuLingHong (WLH)] were chosen as materials. In total, 32 differential metabolites were identified, including phenolic acids, flavan-3-ols, dimeric catechins, flavonol and flavonol/flavone glycosides, etc. Partial least squares discrimination analysis and hierarchical cluster analysis showed various effects of different rootstocks on metabolites. Thereinto, rootstocks of WLH and BY showed extremely outstanding performance in up- and downregulating these metabolites, respectively. Differential metabolites were enriched into three crucial pathways, including biosynthesis of phenylpropanoids, flavonoid biosynthesis, and flavone and flavonol biosynthesis, which might influence the quality of tea. This study provides a theoretical basis for grafting-related variations of non-volatile metabolites in fresh tea leaves.


Subject(s)
Camellia sinensis/chemistry , Plant Extracts/chemistry , Plant Leaves/chemistry , Camellia sinensis/metabolism , Chromatography, High Pressure Liquid , Metabolomics , Plant Breeding , Plant Leaves/metabolism , Plant Proteins/chemistry , Plant Proteins/metabolism , Tandem Mass Spectrometry
5.
Food Res Int ; 108: 413-422, 2018 06.
Article in English | MEDLINE | ID: mdl-29735074

ABSTRACT

Oolong tea is a typical semi-fermented tea and is famous for its unique aroma. The aim of this study was to compare the volatile compounds during manufacturing process to reveal the formation of aroma. In this paper, a method was developed based on head-space solid phase microextraction/gas chromatography-mass spectrometry (HS-SPME/GC-MS) combined with chemometrics to assess volatile profiles during manufacturing process (fresh leaves, sun-withered leaves, rocked leaves and leaves after de-enzyming). A total of 24 aroma compounds showing significant differences during manufacturing process were identified. Subsequently, according to these aroma compounds, principal component analysis and hierarchical cluster analysis showed that the four samples were clearly distinguished from each other, which suggested that the 24 identified volatile compounds can represent the changes of volatile compounds during the four steps. Additionally, sun-withering, rocking and de-enzyming can influence the variations of volatile compounds in different degree, and we found the changes of volatile compounds in withering step were less than other two manufacturing process, indicating that the characteristic volatile compounds of oolong tea might be mainly formed in rocking stage by biological reactions and de-enzyming stage through thermal chemical transformations rather than withering stage. This study suggested that HS-SPME/GC-MS combined with chemometrics methods is accurate, sensitive, fast and ideal for rapid routine analysis of the aroma compounds changes in oolong teas during manufacturing processing.


Subject(s)
Camellia sinensis/chemistry , Food Analysis/methods , Food Handling/methods , Gas Chromatography-Mass Spectrometry , Odorants/analysis , Plant Leaves/chemistry , Smell , Solid Phase Microextraction , Tea/chemistry , Volatile Organic Compounds/analysis , Cluster Analysis , Principal Component Analysis
SELECTION OF CITATIONS
SEARCH DETAIL