Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters

Database
Country/Region as subject
Language
Affiliation country
Publication year range
1.
Water Res ; 245: 120579, 2023 Oct 15.
Article in English | MEDLINE | ID: mdl-37688854

ABSTRACT

Eutrophication and cyanobacterial blooms have severely affected many freshwater ecosystems. We studied the effects of filter-feeding fish and bivalves on algal populations using a mesocosm experiment and long-term monitoring data from Lake Taihu (China). The mesocosm study, comprised of a two-way factorial design with the clam Corbicula fluminea and the fish Aristichthys nobilis at three biomass levels, resulted in lower chlorophyll a (Chl a) in high fish treatments, but no significant differences in the low and medium fish treatments. Chl a also decreased with an increase in clam biomass in the high fish treatments. Moreover, filter-feeding fish resulted in a decrease in algal sizes (e.g., the colony size of Microcystis aeruginosa was inversely related to fish biomass) which likely increased the filter-feeding efficiency of bivalves. Biomass of filter-feeding fish was found to be a key factor driving the synergistic effects of filter-feeding fish and bivalves in waters dominated by Microcystis colonies. Long-term monitoring revealed increasing trends in Chl a concentration, total fish catch per unit effort (TF-CPUE), and filter-feeding fish (FF-CPUE), and slightly decreasing trends in bivalve biomass and nitrogen to phosphorus ratios (N:P) from 2006 to 2016. Bivalve biomass and N:P were negatively correlated with Chl a, while FF-CPUE was not significantly related to Chl a. The current filter-feeding fish biomass in Lake Taihu is estimated to be too low to drive synergistic algal control effects together with bivalves. Furthermore, the lack of filter feeders in Lake Taihu may lead to top-down control by predators that cannot counteract the bottom-up effects of nutrients on phytoplankton. Collectively, these long-term monitoring and experimental data support the combined use filter-feeding fish and bivalves for managing cyanobacteria blooms in Lake Taihu.


Subject(s)
Bivalvia , Cyanobacteria , Microcystis , Animals , Lakes/microbiology , Chlorophyll A , Ecosystem , Phosphorus/analysis , Eutrophication , China , Fishes , Environmental Monitoring/methods
2.
Chemosphere ; 332: 138899, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37169089

ABSTRACT

Submerged macrophytes can improve water quality and buffer the effects of external nutrient loading, which helps to maintain a clear-water state in shallow lakes. We constructed 12 large enclosures with contrasting coverages (treatments) of submerged macrophytes (SMC) to elucidate their buffering capacity and resilience to nutrient pulses. We found that aquatic ecosystems with high SMC had higher buffering capacity and resilience, vice versa, i. e, the enclosures with high SMC quickly buffered the nutrient pulse and rebounded to clear-water state after a short stay in turbid-water state dominated by algae, while the treatments with low SMC could not fully buffer the pulse and rebound to clear-water state, and they slowly entered the transitional state after staying in turbid-water state. This means that the enclosures with high SMC had a better water quality than those with low SMC, i.e., the levels of nutrients and Chl-a were lower in the treatments with high plant coverage. In addition, plant coverage had a significantly positive buffering effect against nitrogen and phosphorus pulses, i.e., the nutrient concentrations in the treatments with high SMC took shorter time to return to the pre-pulse level. Overall, our results evidenced that the higher that the SMCs is, the better is the water quality and buffering capacity against nutrient pulses, i.e. the more stable is the clear-water state. However, low SMC may not be able to resist the impact of such strong nutrient pulse. Our results provide reference and guidance for water pollution control and water ecological restoration.


Subject(s)
Ecosystem , Lakes , Plants , Nutrients , Phosphorus
3.
Sci Total Environ ; 850: 157847, 2022 Dec 01.
Article in English | MEDLINE | ID: mdl-35932860

ABSTRACT

The re-establishment of submerged macrophytes facilitates the formation of a clear-water state in shallow eutrophic lakes. But most restorations of submerged macrophytes are often unstable and cannot maintain a stable clear-water state, probably because the species and functional diversity have not been fully taken into account. In this study, we try to explore submerged macrophyte communities and water quality changes under different submerged macrophyte combinations through mesocosm experiments. We hypothesized that communities with high species and functional diversity would be more conducive to improving water quality. The results showed that the mean community biomass of single-species and 8-species were higher than 5-species. And the stability and mean relative growth rate of the 8-species community were higher than the 5-species community. With the same configuration of three functional groups, the 8-species community was more stable and had better water quality than the 5-species community. The path analysis revealed that different functional groups of submerged macrophytes play different roles. The erect and canopy-producing submerged macrophytes were conducive to reducing total suspended solids (TSS) concentrations in the water column during community construction. In contrast, bottom-dwelling submerged macrophytes were conducive to reducing total nitrogen, total phosphorus, and TSS concentrations during the stage of disturbances. Our results also suggested that canopy-producing groups may have a competitive advantage for light over bottom-dwelling species. Based on the above results and biodiversity insurance hypothesis, we conclude that the community consisting of multi-functional species-rich groups is conducive to building stable submerged macrophyte communities and obtaining a stable clear-water state. Our findings will improve water quality management and pollution control for eutrophic shallow lakes.


Subject(s)
Lakes , Water Quality , Biomass , Nitrogen/analysis , Phosphorus/analysis
4.
Sci Total Environ ; 842: 156967, 2022 Oct 10.
Article in English | MEDLINE | ID: mdl-35764152

ABSTRACT

Biomanipulation by piscivore stocking has been widely used to combat eutrophication in north temperate lakes, but its applicability in warm lakes has not yet been well elucidated. Here, we used experimental mesocosms to test the effects of a native benthi-piscivore (snakehead, Channa argus Cantor) on water clarity under subtropical conditions where small omni-benthivorous fish like crucian carp (Carassius carassius L.) prevail. Our results showed that, despite of a great reduction of crucian carp biomass, snakehead stocking did not create a strong trophic cascade as neither (herbivorous) zooplankton biomass nor their grazing pressure, indicated by biomass ratio of (herbivorous) zooplankton to phytoplankton, changed significantly. Moreover, snakehead stocking significantly increased water non-algal turbidity as well as nutrient and chlorophyll-a concentrations, suggesting that these benthi-piscivores also disturbed sediments like crucian carp did. Our study showed that biomanipulation by stocking of snakehead does not facilitate clear-water state in warm shallow lakes, even on the short-term.


Subject(s)
Carps , Water , Animals , Biomass , Eutrophication , Lakes , Phosphorus , Phytoplankton , Zooplankton
5.
J Environ Manage ; 314: 115036, 2022 Jul 15.
Article in English | MEDLINE | ID: mdl-35421721

ABSTRACT

Bioturbation by omni-benthivorous fish often causes sediment resuspension and internal nutrient loading, which boosts phytoplankton growth and may lead to a shift of clear water lakes to a turbid state. Removal of large-sized omni-benthivorous individuals is a lake restoration measure that may revert lakes from a turbid to a clear water state, yet the rapid reproduction of small omni-benthivorous fish in tropical and subtropical shallow lakes may impede such lake recovery. In lake restoration, also a combination of lanthanum-modified bentonite (LMB) and planting submerged macrophytes has been used that may synergistically improve lake water quality. How the combined effect works in the presence of small omni-benthivorous fish has not been studied, which is needed given the high abundances of small omni-benthivorous fish in (sub)tropical lakes. We conducted a two-by-two factorial mesocosm experiment with and without the submerged macrophytes Vallisneria natans and with and without LMB, all in the presence of small crucian carp. At the end of the experiment, turbidity in the V. natans, LMB and combined LMB + V. natans treatments had decreased by 0.8%, 30.3% and 30.9%, respectively, compared with the controls. In addition, the nitrogen (N) and phosphorus (P) release from the sediment in the combined LMB + V. natans treatments had decreased substantially, by 97.4% and 94.3%, respectively, compared with the control. These N and P fluxes were also significantly lower in the combined LMB + V. natans treatments than in the sole LMB treatment (88.1% and 82.3%) or the V. natans treatment (93.2% and 90.3%). Cyanobacteria in the overlying water in the combined LMB + V. natans treatments significantly decreased by 84.1%, 63.5% and 37.0%, respectively, compared with the control and the sole LMB and V. natans treatments. Our results show that LMB and submerged macrophytes complement each other in effectively improving the water quality, even in the presence of small omni-benthivorous fish.


Subject(s)
Carps , Water Quality , Animals , Bentonite , Lakes , Lanthanum , Phosphorus/analysis
6.
J Environ Manage ; 301: 113898, 2022 Jan 01.
Article in English | MEDLINE | ID: mdl-34626943

ABSTRACT

In shallow eutrophic lakes, submersed macrophytes are essential for maintaining a clear water state, and they are affected markedly by fishes directly through herbivory and indirectly by fish-invertebrate-periphyton complexity, a pathway that presently is not well understood in subtropical lakes but probably vital to lake managements. We conducted a mesocosm study involving benthic fish (Misgurnus anguillicaudatus), snails (Radix swinhoei) and submersed macrophyte (Vallisneria natans), aiming to examine whether benthic fish is detrimental to reestablishment of clear-water macrophyte-dominated state in eutrophic degraded lakes. In addition, we aimed to investigate the cascading effect that benthic fish might have on periphyton and phytoplankton and to what extent snails can alleviate this effect. Our results showed that benthic fish promoted nutrient release from the sediment and thereby facilitated the growth of phytoplankton and periphyton, leading to reduced growth of submerged macrophytes due to shading. Snails consumed the periphyton attached on the leaves of macrophytes, thereby being beneficial to the plant growth, albeit it could not fully counteract the adverse effects from benthic fish. The water quality indicators in terms of nutrients concentrations, phytoplankton biomass and light extinction coefficient along the water column was affected primarily by benthic fish, followed by macrophytes and snails. To target a clear-water condition, the water quality was best at the presence of macrophytes alone or in combination with snails, and worst at the presence of benthic fish. Our results implied that the removal of benthic fish should be a useful ecological restoration method for rehabilitation of submersed macrophytes and water quality improvement in subtropic, eutrophic, shallow lakes following external nutrient loading reduction.


Subject(s)
Hydrocharitaceae , Lakes , Animals , Biomass , Fishes , Phosphorus , Phytoplankton
7.
Environ Sci Pollut Res Int ; 28(17): 21779-21788, 2021 May.
Article in English | MEDLINE | ID: mdl-33411272

ABSTRACT

Lanthanum-modified bentonite (LMB) is widely used for eutrophication control and has demonstrated good efficiency in some eutrophic lakes. However, the efficiency of LMB on eutrophication control in some eutrophic lakes, where the structure of food webs is mainly dominated by omni-benthivorous fish, remains ambiguous. Omni-benthivorous fish usually disturbs sediment and promotes the release of internal nutrients, the effect of which on the efficacy of LMB remains to be studied. Thus, a 30-day mesocosm experiment was conducted to determine whether omni-benthivorous fish disturbance and LMB would cause antagonistic responses. LMB significantly reduced dissolved P concentration in overlying water, converting mobile P to bound P in the surface layer of sediment in the absence of crucian carp (Carassius carassius). However, there were significantly negative interaction effects between LMB and crucian carp. Although LMB still effectively reduced the total dissolved phosphorus (TDP) and soluble reactive phosphorus (SRP) concentrations of overlying water in the presence of crucian carp, it had limited efficacy on inhibiting the increased concentrations of suspended solids, particulate nutrients, and chlorophyll a (Chl a) due to crucian carp disturbance. Furthermore, the crucian carp disturbance also increased the risk of mobile P releasing from surface sediment, whether with or without LMB application. The results indicated that the efficacy of LMB was insufficient to offset the negative effect of omni-benthivorous fish disturbance on eutrophication control. Hence, the omni-benthivorous fish also need to be considered for eutrophication control in shallow eutrophic lakes. Some measures need to be taken to control the biomass of omni-benthivorous fish.


Subject(s)
Bentonite , Carps , Animals , Chlorophyll A , Eutrophication , Lakes , Lanthanum , Phosphorus
8.
Water Res ; 144: 304-311, 2018 11 01.
Article in English | MEDLINE | ID: mdl-30071399

ABSTRACT

Although it is well established that climate warming can reinforce eutrophication in shallow lakes by altering top-down and bottom-up processes in the food web and biogeochemical cycling, recent studies in temperate zones have also shown that adverse effects of rising temperature are diminished in fishless systems. Whereas the removal of zooplanktivorous fish may be useful in attempts to mitigate eutrophication in temperate shallow lakes, it is uncertain whether similar mitigation might be achieved in warmer climates. We compared the responses of zooplankton and phytoplankton communities to climate warming in the presence and absence of fish (Aristichthys nobilis) in a 4-month mesocosm experiment at subtropical temperatures. We hypothesized that 1) fish and phytoplankton would benefit from warming, while zooplankton would suffer in fish-present mesocosms and 2) warming would favor zooplankton growth but reduce phytoplankton biomass in fish-absent mesocosms. Our results showed significant interacting effects of warming and fish presence on both phytoplankton and zooplankton. In mesocosms with fish, biomasses of fish and phytoplankton increased in heated treatments, while biomasses of Daphnia and total zooplankton declined. Warming reduced the proportion of large Daphnia in total zooplankton biomass, and reduced the zooplankton to phytoplankton biomass ratio, but increased the ratio of chlorophyll a to total phosphorus, indicating a relaxation of zooplankton grazing pressure on phytoplankton. Meanwhile, warming resulted in a 3-fold increase in TP concentrations in the mesocosms with fish present. The results suggest that climate warming has the potential to boost eutrophication in shallow lakes via both top-down (loss of herbivores) and bottom-up (elevated nutrient) effects. However, in the mesocosms without fish, there was no decline in large Daphnia or in total zooplankton biomass, supporting the conclusion that fish predation is the major driver of low large Daphnia abundance in warm lakes. In the fishless mesocosms, phytoplankton biomass and nutrient levels were not affected by temperature. Our study suggests that removing fish to mitigate warming effects on eutrophication may be potentially beneficial in subtropical lakes, though the rapid recruitment of fish in such lakes may present a challenge to success in the long-term.


Subject(s)
Daphnia/physiology , Ecosystem , Fishes/physiology , Plankton/physiology , Animals , Biomass , Climate , Food Chain , Herbivory , Lakes , Phosphorus/metabolism , Phytoplankton/physiology , Predatory Behavior , Temperature , Zooplankton/physiology
9.
Environ Sci Pollut Res Int ; 24(5): 5012-5018, 2017 Feb.
Article in English | MEDLINE | ID: mdl-28000069

ABSTRACT

It is well established that benthivorous fish in shallow lakes can create turbid conditions that influence phytoplankton growth both positively, as a result of elevated nutrient concentration in the water column, and negatively, due to increased attenuation of light. The net effect depends upon the degree of turbidity induced by the benthivores. Stocked Carassius carassius dominate the benthivorous fish fauna in many nutrient-rich Chinese subtropical and tropical shallow lakes, but the role of the species as a potential limiting factor in phytoplankton growth is ambiguous. Clarification of this relationship will help determine the management strategy and cost of restoring eutrophic lakes in China and elsewhere. Our outdoor mesocosm experiment simulating the effect of high density of crucian carp on phytoplankton growth and community structure in eutrophic shallow lakes suggests that stocking with this species causes resuspension of sediment, thereby increasing light attenuation and elevating nutrient concentrations. However, the effect of light attenuation was insufficient to offset the impact of nutrient enhancement on phytoplankton growth, and significant increases in both phytoplankton biomass and chlorophyll a concentrations were recorded. Crucian carp stocking favored the dominance of diatoms and led to lower percentages (but not biomass) of buoyant cyanobacteria. The dominance of diatoms may be attributed to a competitive advantage of algal cells with high sedimentation velocity in an environment subjected to frequent crucian carp-induced resuspension and entrainment of benthic algae caused by the fish foraging activities. Our study demonstrates that turbidity induced by stocked crucian carp does not limit phytoplankton growth in eutrophic waters. Thus, removal of this species (and presumably other similar taxa) from subtropical or tropical shallow lakes, or suspension of aquaculture, is unlikely to boost phytoplankton growth, despite the resulting improvements in light availability.


Subject(s)
Carps , Geologic Sediments , Phytoplankton/growth & development , Animals , Biomass , China , Chlorophyll/analogs & derivatives , Chlorophyll A , Cyanobacteria , Diatoms , Eutrophication , Lakes , Light , Phosphorus/analysis , Water
SELECTION OF CITATIONS
SEARCH DETAIL