Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 67
Filter
1.
Medicine (Baltimore) ; 102(43): e35759, 2023 Oct 27.
Article in English | MEDLINE | ID: mdl-37904453

ABSTRACT

Postoperative pain occurs immediately after surgery. The most common perioperative analgesic methods are nerve block, patient-controlled intravenous analgesia, and patient-controlled epidural analgesia. However, overuse of opioid analgesics can cause many adverse reactions including excessive sedation, respiratory inhibition, postoperative nausea, and vomiting. In recent years, many clinical trials have shown that perioperative acupuncture has unique advantages in patients. Perioperative acupuncture can relieve intraoperative pain, improve postoperative pain management, reduce postoperative nausea and vomiting, and shorten the length of hospital stay. This study aimed to confirm the analgesic effect of perioperative acupuncture by reviewing studies on the different methods of perioperative acupuncture and their analgesic effects. The cited literature was searched in English and Chinese from PubMed, China National Knowledge Infrastructure, and Wanfang data, using the following keywords: "perioperative pain," "acupuncture," "electroacupuncture," and "perioperative analgesia." Studies published from 2005 to 2023 were included. All retrieved papers were read in detail. Perioperative acupuncture has benefits in reducing postoperative pain and opioid need. Although analgesic drugs are still the primary means of postoperative pain control, acupuncture provides a safe analgesic supplement or alternative. This review aimed to assist practitioners in choosing appropriate perioperative acupuncture methods by summarizing the recent literature on the role of different acupuncture approaches for perioperative pain management.


Subject(s)
Acupuncture Therapy , Nerve Block , Humans , Acupuncture Therapy/methods , Analgesics/therapeutic use , Analgesics, Opioid/adverse effects , Postoperative Nausea and Vomiting/drug therapy , Nerve Block/methods , Pain, Postoperative/drug therapy , Pain, Postoperative/prevention & control
2.
Microbiol Spectr ; : e0480322, 2023 Feb 21.
Article in English | MEDLINE | ID: mdl-36809123

ABSTRACT

Coptis chinensis is a traditional Chinese medicinal herb used for more than 2,000 years. Root rot in C. chinensis can cause brown discoloration (necrosis) in the fibrous roots and rhizomes, leading to plants wilting and dying. However, little information exists about the resistance mechanism and the potential pathogens of the root rot of C. chinensis plants. As a result, in order to investigate the relationship between the underlying molecular processes and the pathogenesis of root rot, transcriptome and microbiome analyses were performed on healthy and diseased C. chinensis rhizomes. This study found that root rot can lead to the significant reduction of medicinal components of Coptis, including thaliotrine, columbamine, epiberberin, coptisine, palmatine chloride, and berberine, affecting its efficacy quality. In the present study, Diaporthe eres, Fusarium avenaceum, and Fusarium solani were identified as the main pathogens causing root rot in C. chinensis. At the same time, the genes in phenylpropanoid biosynthesis, plant hormone signal transduction, plant-pathogen interaction, and alkaloid synthesis pathways were involved in the regulation of root rot resistance and medicinal component synthesis. In addition, harmful pathogens (D. eres, F. avenaceum and F. solani) also induce the expression of related genes in C. chinensis root tissues to reduce active medicinal ingredients. These results provide insights into the root rot tolerance study and pave the way for process disease resistance breeding and quality production of C. chinensis. IMPORTANCE Root rot disease significantly reduces the medicinal quality of Coptis chinensis. In the present study, results found that the C. chinensis fibrous and taproot have different tactics in response to rot pathogen infection. Diaporthe eres, Fusarium avenaceum, and Fusarium solani were isolated and identified to cause different degrees of C. chinensis root rot. These results are helpful for researchers to further explore the mechanism of resistance to rhizoma Coptis root rot.

3.
Plant Dis ; 2022 Oct 12.
Article in English | MEDLINE | ID: mdl-36222729

ABSTRACT

Chinese figwort (Scrophularia ningpoensis Hemsl.) is an important annual herb and its dried root tubers are used as a traditional Chinese herbal medicine. In May 2021, a disease with stem rot symptoms on S. ningpoensis was observed at three randomly selected fields (~0.67 ha per field) in Nanchuan district (28.93°N, 107.27°E) of Chongqing, China. Disease incidence was estimated between 10% and 17% based on calculating the proportion of symptomatic plants. Initially, watery dark brown spots appeared on the epidermis of the stem. Then the spots expanded into spindle or strip shape, and the center of lesions were sunken, constricted and rotted finally (Figure 1A and Figure 1B). Leaves turned yellow and the plants wilted (Figure 1C). The infected parts of the stem broke easily and became brittle. The number of daughter buds used for reproduction was reduced by more than 24% and the production of root tubers decreased by more than 3%. Twelve stems with typical rot symptoms were sampled from the three fields for further investigation. Infested tissue fragments (4×4 mm) were surface sterilized with 75% ethanol for 30s and 2% sodium hypochlorite for 2 minutes in turn, finally, were rinsed 4 times with sterilized water. The disinfected tissue were air-dried and transferred onto potato dextrose agar (PDA) in the dark for 6 days at 25℃. The resulting fungal colonies were isolated by the single-spore isolation technique (Fang. 1998). Six different fungal colonies were isolated (X1-X6) and Koch's postulates were conducted to verify the pathogenicity of individual isolates. The stem surfaces of 8 months old plants were sterilized with 75% ethanol for 30 s, rinsed three times with sterilized water, and stabbed with a sterilized needle. Conidial from the fungal colonies grown on PDA plate were harvested by filtration through five layers of sterilized absorbent gauze. Conidial concentration was then adjusted to 106 conidia per mL. 10 µL of conidial suspension was sprayed on stems injured with a sterile syringe. For each isolate, 6 plants were inoculated. Stems inoculated with sterilized water were used as a blank control. All plants were all put in a growth chamber at 28℃ with 75 to 80% relative humidity under a 12 h photoperiod for 15 days. The pathogenicity test was repeated once. After 13 days, the stems inoculated with X3 showed the same rot symptoms as we observed in the fields (Figure 1D) whereas the control stems remained symptomless (Figure 1E). The fungus re-isolated from the plants showing 100% symptoms had a similar morphology than X3 as described below. At the same time, the stems inoculated with X1, X2, X4, X5 and X6 showed no sign of rot. After culturing on PDA for 9 days under 25℃ in dark, isolate X3 grew all over the dish with white or pale pink pigmentation in the center (Figure 1F). Macroconidia were produced on synthetic low nutrient agar (SNA) plates, which showed sickle or spindle, 3 septate, straight to slightly curved with a foot-shaped basal cell, ranging from 17.595~44.88 × 2.04~3.315 µm (n=30). Microconidia were oval, elliptical or reniform, 0 to 1 septate, 3.06~12.75 ×1.785~2.805 µm (n=30) in size (Figure 1G). Phialides of conidiophores were cylindrical, short and monophialides or polyphialides (Figure 1H). Chlamydospores were found terminal or cluster with round or oblong (Figure 1I). These morphological characteristics described as Fusarium commone (Skovgaard et al. 2003). For molecular identification, the ribosomal internal transcribed spacer (ITS), translation elongation factor 1-alpha (EF-1α), RNA polymerase II subunit 1 (RPB1), the largest subunit of RNA polymerase Ⅱ gene sequences (RPB2) and the mitochondrial small subunit rDNA (mtSSU) genes were amplified with primers V9G /ITS4 (Hoog et al. 1998; White et al. 1990), EF1-668F /EF1-1251R (Alves et al. 2008), Fa/G2R (O'Donnell et al. 2010), 5f2/7cr (Liu et al. 1999; O'Donnell et al. 2010) and NMS1/NMS2 (Li et al. 1994). The sequences of isolate X3 were deposited in GenBank (MZ571935 (ITS), MZ576201 (EF-1α), MZ882396 (RPB1), MZ882397 (RPB2) and MZ867716 (mtSSU)). All sequences were revealed more than 99.8% sequence identity with reported sequences of Fusarium commune (GenBank accession No: KY630717, JF740838, KU171680, KU171700 and MK439851). Based on the optimal nucleotide replacement model SYM of multi-gene series sequence matrix, the system development tree was constructed. Results showed the strain X3 and those of F. commune (Isolates numbers were NRRL 28387, MRC 2566, MRC 2564 and CZ3-5-6) were clustered into the same evolutionary branch with a post-mortem probability of 0.996 (Figure 2). According to the morphology, molecular identification and phylogenetic analysis based on the concatenated of EF-1α and RPB2 genes sequences, the isolated X3 was identified as F. commune. The ITS sequences of X1, X2, X4, X5 and X6 showed homology exceeding 97.1% to Fusarium tricinctum (MH931273), Plectosphaerella cucumerina (MH858371), Sordariomycetes sp. (JX179237), Whalleya microplace (EF026129) and Pestalotiopsis maculiformans (EU552147), respectively, suggested the five strains to be these species possibly. GeneBank accession number of X1, X2, X4, X5 and X6 was OM074010, OM074011, OM074013, OM074015 and OM074018, respectively. To our best knowledge, this is the first report of F. commune infecting S. ningpoensis in China. Stem rot caused by F. commune is a severe threat to Chinese figwort cultivation, and identification of this pathogen is important for effective disease management and control.

4.
Hortic Res ; 8(1): 121, 2021 Jun 01.
Article in English | MEDLINE | ID: mdl-34059652

ABSTRACT

Coptis chinensis Franch, a perennial herb, is mainly distributed in southeastern China. The rhizome of C. chinensis has been used as a traditional medicine for more than 2000 years in China and many other Asian countries. The pharmacological activities of C. chinensis have been validated by research. Here, we present a de novo high-quality genome of C. chinensis with a chromosome-level genome of ~958.20 Mb, a contig N50 of 1.58 Mb, and a scaffold N50 of 4.53 Mb. We found that the relatively large genome size of C. chinensis was caused by the amplification of long terminal repeat (LTR) retrotransposons. In addition, a whole-genome duplication event in ancestral Ranunculales was discovered. Comparative genomic analysis revealed that the tyrosine decarboxylase (TYDC) and (S)-norcoclaurine synthase (NCS) genes were expanded and that the aspartate aminotransferase gene (ASP5) was positively selected in the berberine metabolic pathway. Expression level and HPLC analyses showed that the berberine content was highest in the roots of C. chinensis in the third and fourth years. The chromosome-level reference genome of C. chinensis provides important genomic data for molecular-assisted breeding and active ingredient biosynthesis.

5.
Zhongguo Zhong Yao Za Zhi ; 46(6): 1401-1409, 2021 Mar.
Article in Chinese | MEDLINE | ID: mdl-33787138

ABSTRACT

To investigate the effects of six common drying methods on the quality of different specifications of Sophorae Flos, in order to select their suitable drying methods. According to appearance and morphology, Sophorae Flos was divided into the following three specifications: flower bud type(HL), half-open type(BK) and blooming type(SK). All specifications of samples were treated with shade-drying method(25 ℃, natural temperature), sun-drying method, hot-air-drying method(60, 105 ℃), and drying method(60 ℃) after steaming. The contents of total flavonoids, rutin, narcissus, quercetin, isorhamnetin, and Fe~(3+) reducing ability, DPPH free radical scavenging ability, ABTS free radical scavenging ability and fluorescence recovery after photobleaching(FRAP) were detected by UV, HPLC and colorimetry, respectively. Principal component analysis(PCA), cluster analysis(CA) and correlation analysis were used to comprehensively evaluate the quality of samples. According to the results, there were significant differences in the effect of drying methods on different specifications of samples. The drying method(60 ℃) after steaming was suitable for HL and BK, while the hot-air-drying method(60 ℃) was suitable for SK. When the fresh medicinal materials could not be treated in time, they should be spread out in a cool and ventilated place. Under high and low temperature conditions, the quality of three specifications of Sophorae Flos would be reduced. The hot-air-drying method(105 ℃) and shade-drying method(25 ℃) were not suitable for the treatment of fresh flowers and flower buds of Sophora japonicus. There were obviously differences of chemical compositions and antioxidant activities among the three specifications of samples. Therefore, the specifications of medicinal materials should be controlled to ensure the uniform quality. The study provided the abundant data reference for the selection of appropriate drying methods for the three specifications of Sophorae Flos, and useful exploration for the classification and processing of medicinal materials of flowers.


Subject(s)
Sophora , Chromatography, High Pressure Liquid , Flavonoids/analysis , Flowers/chemistry , Rutin
6.
Plant Dis ; 2020 Sep 11.
Article in English | MEDLINE | ID: mdl-32915116

ABSTRACT

Coptis chinensis Franchet, is a perennial herb used as a traditional Chinese medicine. Annual production of Coptis is about 3000 tons in Shizhu, Chongqing. In recent years, root rot has become a serious and widespread disease on Coptis in Shizhu with an average incidence of 40%, and yield losses up to 67%. Infected plants were easy to pull from the soil, and most of the fibrous roots and main roots were brown or black compared to healthy roots that were yellow. Severely infected plants were wilted and necrotic. In October 2019, 33 diseased roots were collected from Shizhu (30°18'N, 108°30'E), and small samples (0.5 cm in length) were cut from the border between diseased and healthy tissue, successively sterilized with 75% ethanol and 2% sodium hypochlorite, rinsed 3 times with sterilized water, dried on sterilized filter paper, and transferred onto PDA, and incubated at 25°C for 7 days in dark. Eighteen distinct fungal isolates (H1-H18) were isolated and Koch's postulates were conducted to verify the pathogenicity of individual isolates. The rhizosphere soil of healthy 2-year-old Coptis plants was inoculated by pouring 5 mL of conidial suspension (106 conidia/mL) scraped from a culture of each isolate on PDA. Sterilized water was used to mock inoculate. For each isolate, 6 plants were inoculated. After 20 days, the roots of all plants inoculated with H15 or H18 were dark brown and rotten, while mock inoculated plants were healthy. The isolates H15 and H18 were re-isolated from symptomatic plants. Isolate H15 formed abundant white mycelium on PDA and produced rose pigment in the agar. Conidia were long and slender, straight to slightly curved, with 1-3 septate. The apical cells were tapering and bent, and the foot cells were distinctly notched. Conidiogenous cells were monophialides and polyphialides. No chlamydospores were observed (Figure S1). Isolate H18 formed white sparse mycelium on PDA and produced no pigment in the agar. Conidia were relatively wide, straight and stout, with 3-5 septate. The apical cells were blunt and rounded, and the foot cells were barely notched. Conidiogenous cells were long monophialides. Chlamydospores were formed intercalary in the hyphae (Figure S2). For further identification, the internal transcribed spacer (ITS), ß-tubulin, translation elongation factor 1ɑ (EF1ɑ) and RNA polymerase second largest subunit (RPB2) gene regions were amplified with ITS1/ITS4, Bt2a/Bt2b, EF1/EF2 and 5f2/7cr (White et al. 1990; Glass and Donaldson, 1995; O'Donnell et al. 2010). GenBank accession numbers of H15 and H18 were MT463390 and MT463389 for the ITS region, MT465656 and MT465654 for ß-tubulin, MT653321 and MT465651 for EF1ɑ, and MT653323 and MT653322 for RPB2. BLAST results showed the ITS, ß-tubulin, EF1ɑ, and RPB2 sequences revealed 100% (533/533 base pairs), 100% (265/265 base pairs), 98% (622/632 base pairs), and 99% (936/947 base pairs) homology respectively with those of Fusarium avenaceum (MN186746.1, MH791368.1, KU238140.1, and MK185027.1), and 100% (537/537 base pairs), 100% (227/227 base pairs), 100% (688/688 base pairs), and 99.03% (918/927 base pairs) with F. solani in GenBank (MH857319.1, MN692929.1, KP674211.1, and MH300549.1), respectively. Thus, H15 and H18 were identified as F. avenaceum and F. solani based on its morphological and molecular characteristics. To our knowledge, F. solani has been previously reported as a pathogen on Coptis (Luo et al. 2014), and this is the first report of root rot on Coptis caused by F. avenaceum in the world. Identification of the pathogens is important for effective disease management and control.

7.
Zhongguo Zhong Yao Za Zhi ; 45(13): 3091-3097, 2020 Jul.
Article in Chinese | MEDLINE | ID: mdl-32726016

ABSTRACT

Forty-three annual Citrus aurantium grafted seedlings from Chongqing, Sichuan, Hunan, Jiangxi and other main producing areas were collected, and the plant height, rootstock diameter, scion diameter, root length, root diameter, lateral root number, root breadth, branch number, branch length, green leaf number, leaf length, leaf width, thorns and other indicators were measured. Through the K-cluster analysis of SPSS 19.0 software, the classification standards were obtained. Combined with the production practice, plant height, scion diameter and branch number were taken as the quality classification indexes of C. aurantium seedlings(annual grafted seedlings), and three classification standards were established. If it does not meet the three-level standard, it is unqualified seedling and cannot be used as seedling. It is suggested to use the first and second level seedlings in production.


Subject(s)
Citrus , Seedlings , Plant Leaves , Plant Roots
8.
Zhongguo Zhong Yao Za Zhi ; 45(6): 1323-1328, 2020 Mar.
Article in Chinese | MEDLINE | ID: mdl-32281343

ABSTRACT

Root rot disease is vital disease of Coptis chinensis, it has bursted in most producing area in recent years, and has caused severe damage. To identify the pathogenic fungi, Fusarium spp. fungi were isolated from rot root, of which the pathogenic fungi were screened with inoculation on C. chinensis root and plant, and identified with molecular and morphological method. The 20 Fusarium spp. fungi were obtained, of which 5 displayed high pathogenicity. It was deduced that F. oxysporum, F. solani and F. tricinctum were the pathogen, possibly pioneer pathogen of C. chinensis root rot disease. Among which F. oxysporum was dominant and deserved to pay more attention. High temperature and high humidity can increase pathogenicity of Fusarium spp. So the global climate warming may lead to temperature rising of C. chinensis producing area and favor the pathogen fungi, which may be one of the main factors leading to bursting of C. chinensis root rot disease. To control the root rot, beside developing and using pesticide, producing base should be moved to a high altitude area.


Subject(s)
Coptis/microbiology , Fusarium/classification , Plant Diseases/microbiology , Plant Roots/microbiology , Fusarium/isolation & purification , Fusarium/pathogenicity
9.
Zhongguo Zhong Yao Za Zhi ; 44(20): 4439-4447, 2019 Oct.
Article in Chinese | MEDLINE | ID: mdl-31872630

ABSTRACT

Root rot disease restricts the Coptis chinensis industry in Shizhu of Sichuan province. To disclose fungi composition and pathogen in rot root,so as to prevent and treat the root rot disease,the C. chinensis rot root of 5 years from 4 areas in Shizhu were collected in 3 seasons respectively. The fungi were isolated and molecularly and morphological identified,followed with population statistics. 437 fungi were isolated,belonging to 5 subphylum,11 classes,16 orders,22 families and 28 genus respectively. There are great difference among the fungi compositions of different area,year and sampling season,while there was no obvious variation rule. Ilyonectria sp.,Pythium sp.,Phoma sp,Trichoderma sp.are dominant genus,while Pythium sp.,Ilyonectria sp.,Phoma sp.,Fusarium sp. may contain root rot pathogen. Antagonistic bacteria may be screened from the strains of Trichoderma sp. isolated.


Subject(s)
Coptis/microbiology , Fungi , Ascomycota , Bacteria , China , Fusarium , Trichoderma
10.
Chem Biodivers ; 16(3): e1800504, 2019 Mar.
Article in English | MEDLINE | ID: mdl-30565409

ABSTRACT

Styphnolobium japonicum (L.) Schott is widely cultivated in China, and its flowers and flower buds (FFB-SJ) are commonly used as traditional Chinese medicine. This work aimed to assess variations in the chemical components and antioxidant and tyrosinase inhibitory activities of S. japonicum extract during five flower maturity stages (ES1-ES5). The results showed that the contents of total flavonoids, rutin, and narcissin were highest at ES1, whereas the contents of quercetin and isorhamnetin were highest at ES3. ES1 presented considerable antioxidant activities in terms of reducing power (RP) and 1,1-diphenyl-2-picrylhydrazyl radical (DPPH. ) and hydroxyl radical (. OH) scavenging capacity, whereas ES3 showed excellent tyrosinase inhibitory activity and 2,2'-azinobis(3-ethylbenzothiazoline-6-sulfonic acid) radical (ABTS.+ )- and O2 .- -scavenging capacity. Rutin and quercetin are the main bioactive components of FFB-SJ with antioxidant and tyrosinase inhibition, and the immature flower buds of S. japonicum (S2 and S3) with excellent biological activities and relatively high extract yields were the best for product development.


Subject(s)
Antioxidants/pharmacology , Enzyme Inhibitors/pharmacology , Fabaceae/chemistry , Flowers/chemistry , Monophenol Monooxygenase/antagonists & inhibitors , Plant Extracts/pharmacology , Agaricales/enzymology , Antioxidants/chemistry , Antioxidants/isolation & purification , Benzothiazoles/antagonists & inhibitors , Biphenyl Compounds/antagonists & inhibitors , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/isolation & purification , Hydroxyl Radical/antagonists & inhibitors , Monophenol Monooxygenase/metabolism , Picrates/antagonists & inhibitors , Plant Extracts/chemistry , Plant Extracts/isolation & purification , Sulfonic Acids/antagonists & inhibitors
11.
Zhongguo Zhong Yao Za Zhi ; 43(20): 4027-4032, 2018 Oct.
Article in Chinese | MEDLINE | ID: mdl-30486526

ABSTRACT

With Coptis chinensis in high-yielding soil as the object,the growth regularity of plant and dynamic change of alkaloid content was studied. The plant growth model of C. chinensis was constructed. The plant height equation was y=3.030 9+0.732 6x-0.009 6x²,the number of leaves equation was y=111.882 6-2 234.881 7/x+15 218.960 8/x²-31 740.960 8/x³,the leaf area equation was y=-217.136 1+30.552 2x-0.359 0x²,the roots talk biomass equation was y=-2.748 8+0.210 3x+0.006 4x²,the number of rootstalk equation was y=-1.246 0+0.192 6x+0.000 8x²,the fibrous root biomass equation was y=-4.973 5+0.589 4x -0.002 6x². The results indicated that the number of leaves and leaf area were increasing continuously after seedling transplanting,the leaf area of 3-year-old C. chinensis reached a maximum value of 425.83 cm²/plant,after declining.The number of leave of 5-year-old C. chinensis reached a maximum value of 70.91. With the increasing of years of growth, the number of rootstalk and rootstalk biomass of C. chinensis was increasing continuously. The biomass growth of 3-year-old and 4-year-old rootstalk was the fastest in the whole development stage of C. chinensis,the annual increase of more than 300%. The change curve of rootstalk number, rootstalk biomass and fibrous root biomass in the whole growth stage was a s-type.The dry matter partition of leafwas the highest in 1-year-old C. chinensis, and then gradually decreased,the change trend of dry matter partition of rootstalk was just the opposite, the dry matter partition of fibrous root increases with the increase of the growing year, reaching the maximum value in 3-year-old, then gradually lower trend. The root-shootratio of 1-year-old C. chinensis was the smallest, then gradually increases, the growth center gradually shifted to the roots from stems and leaves, The weight of underground part of 3-year-old C. chinensis exceeded the aboveground part, the 5-year-old C. chinensis root-shoot ratio reached the maximum value of 1.91:1.With the increasing of years of growth, the contents of coptisine, berberine, epiberberine and palmatine in rootstalk was increasing continuously. The jatrorrhizine content in 2-year-old C. chinensis was significantly lower than that in other years, the content was no significant change after that. The columbamine content reached a maximum value in 3-year-old C. chinensis,then the decreased gradually. The content of magnoflorine gradually increased and reached maximum value in 5-year-old C. chinensis.


Subject(s)
Alkaloids/analysis , Coptis/chemistry , Coptis/growth & development , Biomass , Phytochemicals/analysis , Plant Leaves/growth & development , Plant Roots/growth & development
12.
Zhongguo Zhong Yao Za Zhi ; 43(13): 2682-2689, 2018 Jul.
Article in Chinese | MEDLINE | ID: mdl-30111017

ABSTRACT

In order to study the pathways of biosynthesis of flavonoids in Sophora japonica, 113 797 unigenes were obtained by Trinity software, with an average length of 803 bp, of which 72 752 unigenes were obtained from the database by high-throughput sequencing, and a total of 38 891 SSR loci were searched. Through the metabolic pathway analysis, we found that there were 135 unigenes involved in the biosynthesis of flavonoids and 959 unigene involved in other secondary metabolic pathways. Further analysis of genes involved in rutin biosynthesis revealed that 24 were associated with CHS, 52 were associated with FLS, and 11 were associated with UFGT. The obtained data of S. japonica transcriptome lays the foundation for studying the pathways of biosynthesis of flavonoids in S. japonica and provides theoretical basis for the formation of the quality of S. japonica.


Subject(s)
Sophora , Flavonols , Gene Expression Profiling , High-Throughput Nucleotide Sequencing , Transcriptome
13.
PLoS One ; 13(3): e0193811, 2018.
Article in English | MEDLINE | ID: mdl-29538438

ABSTRACT

In this study, effects of continuous cropping on soil properties, enzyme activities, and relative abundance, community composition and diversity of fungal taxa were investigated. Rhizosphere soil from field continuously cropped for one-year, three-year and five-year by Coptis chinensis Franch. was collected and analyzed. Illumina high-throughput sequencing analysis showed that continuous cropping of C. chinensis resulted in a significant and continuous decline in the richness and diversity of soil fungal population. Ascomycota, Zygomycota, Basidiomycota, and Glomeromycota were the dominant phyla of fungi detected in rhizosphere soil. Fungal genera such as Phoma, Volutella, Pachycudonia, Heterodermia, Gibberella, Cladosporium, Trichocladium, and Sporothrix, were more dominant in continuously cropped samples for three-year and five-year compared to that for one-year. By contrast, genera, such as Zygosaccharomyces, Pseudotaeniolina, Hydnum, Umbelopsis, Humicola, Crustoderma, Psilocybe, Coralloidiomyces, Mortierella, Polyporus, Pyrenula, and Monographella showed higher relative abundance in one-year samples than that in three-year and five-year samples. Cluster analysis of the fungal communities from three samples of rhizosphere soil from C. chinensis field revealed that the fungal community composition, diversity, and structure were significantly affected by the continuous cropping. Continuous cropping of C. chinensis also led to significant declines in soil pH, urease, and catalase activities. Redundancy analysis showed that the soil pH had the most significant effect on soil fungal population under continuous cropping of C. chinensis.


Subject(s)
Agriculture/methods , Coptis/microbiology , Crops, Agricultural/microbiology , Fungi , Rhizosphere , Soil Microbiology , Biodiversity , Cluster Analysis , Fungi/enzymology , Fungi/genetics , Hydrogen-Ion Concentration , Plant Roots/microbiology , Plants, Medicinal/microbiology , Soil/chemistry , Time Factors
14.
Zhongguo Zhong Yao Za Zhi ; 42(17): 3312-3319, 2017 Sep.
Article in Chinese | MEDLINE | ID: mdl-29192440

ABSTRACT

With Sophora japonica at the flowering stage as the object, the effect of nitrogen, phosphorus and potassium fertilizers on the yield composition factors, yield and quality of Flos Sophorae Immaturus (FSI) was studied. The results indicated that in early spring, nitrogen, phosphorus and potassium fertilizer on the amplification rate of S. japonica, FSI yield composition, yield and quality were different significantly, middle to high nitrogen (1.5-2.0 kg/plant) significantly increased the level of panicled clusters, raceme and flower bud number and yield. Phosphorus (1.5-2.0 kg/plant) could significantly increase the total buds of flower number and yield, potassium showed no significant increase in yield and yield components. Comprehensively considering yield and quality of FSI, nitrogen 1.5-2.0 kg/plant, phosphorus 1.5-2.0 kg/plant and potassium 0.6-0.9 kg/plant are appropriate.


Subject(s)
Fertilizers , Flowers/growth & development , Nitrogen , Phosphorus , Potassium , Sophora/growth & development , China , Plants, Medicinal/growth & development
15.
Zhongguo Zhong Yao Za Zhi ; 42(5): 902-911, 2017 Mar.
Article in Chinese | MEDLINE | ID: mdl-28994533

ABSTRACT

The endophytic fungi from root, main stem, branch and leaf of Scrophularia ningpoensis were isolated and identified from Wulong and Chongqing, and the population diversity analysis and phylogenetic analysis were followed. The result indicated that, as to population diversity index, S. ningpoensis from Wulong: leaf>main stem=branch>root, branch from Chongqing>branch from Wulong. Fifty-eight endophytic fungi were obtained, most of which were the pathogens of the plant. Colletotrichum was the prevailing genus, of which C. gloeosporioides and C. boninense were the prevailing strains. Leaf and seedlings might be the main path of infection. Endophytic fungi and pathogen might convert to each other, influenced by such factors as environment, genotype et al.


Subject(s)
Endophytes/classification , Fungi/classification , Phylogeny , Scrophularia/microbiology , China , Colletotrichum , Plant Leaves/microbiology , Plant Roots/microbiology , Plant Stems/microbiology
16.
Zhongguo Zhong Yao Za Zhi ; 42(7): 1304-1311, 2017 Apr.
Article in Chinese | MEDLINE | ID: mdl-29052391

ABSTRACT

Illumina Hiseq 2500 high-throughput sequencing platform was used to study the bacteria richness and diversity, the soil enzyme activities, nutrients in unplanted soil, root-rot and healthy rhizophere soil of Coptis chinensis for deeply discussing the mechanism of the root-rot of C. chinensis. The high-throughput sequencing result showed that the artificial cultivation effected the bacteria community richness and diversity. The bacteria community richness in healthy and diseased rhizosphere soil showed significant lower than that of in unplanted soil (P<0.05) and declined bacteria diversity. The bacteria community richness in root-rot rhizosphere soil increased significantly than that of health and unplanted soil and the diversity was lower significant than that of unplanted soil (P<0.05). The results of soil nutrients and enzyme activities detected that the pH value, available phosphorus and urease activity decreased and the sucrase activity increased significantly (P<0.05). The content of organic carbon and alkaline hydrolysis nitrogen the catalase and urease activity in root rot soil samples was significantly lower than that of healthy soil samples (P<0.05). However, the contents of available phosphorus and available potassium were significantly in root-rot sample higher than that of healthy soil samples (P<0.05). Comprehensive analysis showed that the artificial cultivation declined the bacteria community richness and diversity. The bacteria community richness decreased significantly and the decreased diversity may be the cause of the root-rot. Meanwhile, the decrease of carbon and the catalase activity may be another cause of the root-rot in C. chinensis produced in Shizhu city, Chongqing province.


Subject(s)
Coptis/microbiology , Plant Diseases/microbiology , Plant Roots/microbiology , Rhizosphere , Soil Microbiology , Agriculture , Bacteria , Biodiversity , China , Soil
17.
Zhongguo Zhong Yao Za Zhi ; 42(2): 274-279, 2017 Jan.
Article in Chinese | MEDLINE | ID: mdl-28948730

ABSTRACT

To explore the optimum conditions of ß-glucosidase activity in Scrophularia root by using pNPG method. The extraction conditions and reaction conditions (such as extraction liquid type, reaction system, reaction time, temperature, and substrate concentration) were screened by using monofactorial experiment and homogeneous design. Then the changes of ß-glucosidase activity in Scrophularia root were detected at the drying temperature of 40-100 ℃. The results showed that citric acid phosphate buffer had better extraction effect, and the maximum absorbance produced by enzymatic reaction was present at 50 ℃ environment after reaction for 30 min. Homogeneous design experiment determined that the optimal conditions were as follows: optimal extraction liquid pH 7.0; enzymatic reaction system pH 6.0; substrate concentration 20 mmol•L⁻¹. The change of enzyme activity was affected by drying temperature and water loss rate. In the drying temperature of 60-100 ℃, the enzyme activity was reduced rapidly with the increase in water loss rate, while the activity was seen even with 0% of water at 40 and 50 ℃. This study has laid the theoretical foundation for research of hydrolysis mechanism of iridoid glycosides and optimum drying process.


Subject(s)
Desiccation/methods , Scrophularia/enzymology , beta-Glucosidase/metabolism , Hydrogen-Ion Concentration , Hydrolysis , Iridoid Glycosides/chemistry , Plant Roots/enzymology , Technology, Pharmaceutical , Temperature
18.
Zhongguo Zhong Yao Za Zhi ; 42(3): 473-477, 2017 Feb.
Article in Chinese | MEDLINE | ID: mdl-28952251

ABSTRACT

The genetic diversity and genetic relationship among four medicinal species of Coptis were detected by the approach of sequence-related amplified polymorphism (SCoT). The associated genetic parameters were calculated by POPGENE1.31. The systematic diagram of genetic relationship were clustered by TREECONW. The results showed that a total of 434 bands were produced by using 28 primers, of which 430 were polymorphic loci. There was a high level of genetic diversity among species (PPB=99.1%,Na=1.990 6,Ne=1.329 3,H=0.212 2,I=0.337 8). However, genetic diversity was lower within species, the average of genetic parameters wasPPB=16.8%,Na=1.168 2, Ne=1.073 0,H=0.043 7,I=0.067 7. The Nei's genetic differentiation coefficient was 0.794 0, that indicated that most of the genetic variation existed among species. By clustering analysis, different individuals gathered in the same group. The results confirmed that SCoT marker can be used as one of the effective methods to reveal the genetic diversity and relationship among medicinal species of Coptis.


Subject(s)
Coptis/genetics , Genetic Variation , Phylogeny , China , Cluster Analysis , Coptis/classification , DNA Primers , Plants, Medicinal/classification , Plants, Medicinal/genetics , Polymorphism, Genetic
19.
Zhongguo Zhong Yao Za Zhi ; 42(13): 2460-2466, 2017 Jul.
Article in Chinese | MEDLINE | ID: mdl-28840684

ABSTRACT

To investigate the profile of gene function and search for SSR, a new technology of high-throughput Solexa/Illumina sequencing was used to generate the root transcriptome of Scrophularia ningpoensis, and 65 602 036 raw reads were obtained. Based on the bioinformatics analysis and Trinity, 73 983 unigenes were obtained with an average length of 823 bp. The comparison of sequence homology in database showed that 56 389 unigenes had different degrees of homology. A total of 520 metabolic pathways related genes and 191 relDODO transcription factors were identified by the Swiss-Prot, GO, KEGG and COG.The 11 659 SSRs were found by MISA and the highest frequency was AG/CT. In this study, we obtained numerous SSRs to provide references for the study of functional gene cloning and genetic diversity of S. ningpoensis. The key genes involved in the secondary metabolism are the basis for the study of biosynthesis and regulatory mechanism of the secondary metabolites.


Subject(s)
Scrophularia/genetics , Terpenes/metabolism , Transcriptome , Gene Expression Profiling , Genes, Plant , High-Throughput Nucleotide Sequencing , Molecular Sequence Annotation
20.
Zhongguo Zhong Yao Za Zhi ; 42(12): 2261-2268, 2017 Jun.
Article in Chinese | MEDLINE | ID: mdl-28822178

ABSTRACT

In order to understand the associated species and the population distribution pattern, the investigation of 32 sample plotsfrom the main natural distribution area in Dipsacus asperoides community was carried by quadrat method .The results showed that there were 156 species, which belong to 131 genera and 60 families. There were more species in the two dominant families, Asteraceae and Rosaceae. There were many types of associated, but most appeared at a low frequency. The vegetation type were mostly herbaceous and shrub species, which accounted for 77.6% of the total species. The value of t was greater than t0.05 by methods of variance/mean, showed the difference was significant and the distribution pattern of D. asperoides were cluster distribution. The determination results of seven aggregation intensity index also showed that D. asperoides population accorded with the characteristics of cluster distribution(C>1,K>0,Ca>0,m*>1,m*/m>1,I>0,GI>0).


Subject(s)
Biodiversity , Dipsacaceae/growth & development , Plant Dispersal , Plants/classification , China
SELECTION OF CITATIONS
SEARCH DETAIL