Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
1.
Ageing Res Rev ; 94: 102183, 2024 02.
Article in English | MEDLINE | ID: mdl-38218465

ABSTRACT

Brain diseases present a significant obstacle to both global health and economic progress, owing to their elusive pathogenesis and the limited effectiveness of pharmaceutical interventions. Phototherapy has emerged as a promising non-invasive therapeutic modality for addressing age-related brain disorders, including stroke, Alzheimer's disease (AD), and Parkinson's disease (PD), among others. This review examines the recent progressions in phototherapeutic interventions. Firstly, the article elucidates the various wavelengths of visible light that possess the capability to penetrate the skin and skull, as well as the pathways of light stimulation, encompassing the eyes, skin, veins, and skull. Secondly, it deliberates on the molecular mechanisms of visible light on photosensitive proteins, within the context of brain disorders and other molecular pathways of light modulation. Lastly, the practical application of phototherapy in diverse clinical neurological disorders is indicated. Additionally, this review presents novel approaches that combine phototherapy and pharmacological interventions. Moreover, it outlines the limitations of phototherapeutics and proposes innovative strategies to improve the treatment of cerebral disorders.


Subject(s)
Alzheimer Disease , Parkinson Disease , Humans , Phototherapy , Skin , Parkinson Disease/pathology , Alzheimer Disease/pathology
2.
J Sci Food Agric ; 103(14): 6884-6894, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37286475

ABSTRACT

BACKGROUND: Porcine nasal cartilage type II collagen-derived peptides (PNCPs) may be complexed with calcium to provide a highly bioavailable, low-cost, and effective calcium food supplement. However, the calcium-binding characteristics of PNCPs have not yet been investigated. In the present study, calcium-binding peptides were derived from porcine nasal cartilage type II collagen and the resulting PNCPs-Ca complex was characterized. RESULTS: The study reveals that the calcium-binding capacity of PNCPs is closely related to enzymatic hydrolysis conditions. The highest calcium-binding capacity of PNCPs was observed at a hydrolysis time of 4 h, temperature of 40 °C, enzyme dosage of 1%, and solid-to-liquid ratio of 1:10. Scanning electron microscopy and energy dispersive X-ray spectroscopy revealed that the PNCPs had a pronounced capacity for calcium binding, with the PNCPs-Ca complex exhibiting a clustered structure consisting of aggregated spherical particles. Fourier-transform infrared spectroscopy, fluorescence spectroscopy, X-ray diffraction, dynamic light scattering, amino acid composition, and molecular weight distribution analyses all indicated that the PNCPs and calcium complexed via the carboxyl oxygen and amino nitrogen atoms, leading to the formation of a ß-sheet structure during the chelation process. In addition, the stability of the PNCPs-Ca complex was maintained over a range of pH values consistent with those found in the human gastrointestinal tract, facilitating calcium absorption. CONCLUSION: These research findings suggest the feasibility of converting by-products from livestock processing into calcium-binding peptides, providing a scientific basis for the development of novel calcium supplements and the potential reduction of resource waste. © 2023 Society of Chemical Industry.


Subject(s)
Calcium , Nasal Cartilages , Humans , Animals , Swine , Calcium/metabolism , Collagen Type II , Nasal Cartilages/chemistry , Nasal Cartilages/metabolism , Peptides/chemistry , Calcium, Dietary/analysis
3.
Lipids ; 58(3): 117-127, 2023 05.
Article in English | MEDLINE | ID: mdl-36942837

ABSTRACT

This study aimed to investigate the effect of fatty acid-ethanol amine (FA-EA) derivatives (L1-L10) on the mitigation of intracellular lipid accumulation and downregulation of pro-inflammatory cytokines in vitro. First, the series of FA-EA derivatives were synthesized and characterized. Then, their cytotoxic, intracellular lipid accumulation and inhibition of pro-inflammatory cytokines were evaluated. The oil red O staining experiment showed that the tested compounds L4, L6, L8, L9, and L10 could reduce intracellular lipid accumulation induced by palmitic acid (PA). Moreover, ω-3/ω-6 PUFA-EA derivatives showed inhibitory effect on the production of pro-inflammatory cytokines in lipopolysaccharide (LPS) -stimulated RAW 264.7 cells. ω-3/ω-6 PUFA-EA derivatives at a concentrations of 10 µM could significantly decrease mRNA levels of IL-6, IL-1ß, and TNF-α, inhibit NO production, and alleviate the protein expression of IL-1ß in lipopolysaccharide (LPS)-stimulated RAW 264.7 cells. These data suggest that ω-3 PUFA-EA derivatives can be beneficial for further pharmaceutical development to treat chronic low-grade inflammation diseases such as obesity.


Subject(s)
Fatty Acids, Omega-3 , Lipopolysaccharides , Humans , Lipopolysaccharides/pharmacology , Fatty Acids, Omega-3/pharmacology , Cytokines/genetics , Cytokines/metabolism , Inflammation/chemically induced , Inflammation/drug therapy , Fatty Acids
4.
Poult Sci ; 102(4): 102490, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36736140

ABSTRACT

The objective of this study was to investigate whether dietary supplementation with benzoic acid, Enterococcus faecium, and essential oil complex (BEC) could help laying hens recover from coccidia and Clostridium perfringens type A challenge. A total of 60 (35-wk-old) Lohmann-laying hens were randomly assigned to 3 experimental groups (10 replicates with 2 hens per replicate): I) control group (CON), II) challenge group (CC), and III) BEC group (2,000 mg/kg BEC). The total experimental period was 8 wk. The results shown that the challenge layers had lower egg-laying rate and average daily feed intake (ADFI) (P < 0.05), and addition of BEC after challenge increased egg-laying rate (P < 0.05). The content of propionic acid (PA) and butyric acid (BA) in short-chain fatty acid (SCFA) was significantly decreased by challenge (P < 0.05). CC and BEC groups had lower villus height to crypt depth ratio (V/C) and higher pathological scores in duodenum (P < 0.05), whereas the BEC group had lower pathological scores in jejunum when compared with the CC group (P < 0.05). The challenge increased the concentration of proinflammatory cytokines (IL-1ß and IL-6) (P < 0.05). An increase in the abundance of Bacteroidoes (genus), Bacteroidaceae (family), Bacteroidoes sp. Marseille P3166 (species), Bacteroidoes caecicola (species) was observed in the CC group, whereas the BEC group had higher abundance of Bacteroides caecigallinarum (species). The genera Faecalibacterium and Asterolplasma were positively correlated with egg-laying rate (r = 0.57, 0.60; P < 0.01); and the genera Bacteroides and Romboutsia were negatively correlated with egg-laying rate (r = -0.58, -0.74; P < 0.01). The genera Bacteroides, Lactobacillus, and Rombutzia were positively correlated with jejunal mucosa proinflammatory factor IL-1ß level (r = 0.61, 0.60, 0.59; P < 0.01), which were negatively correlated with genera Rikenbacteriaceae RC9, Faecalibacterium, and Olsenlla (r = -0.56, -0.57, -0.61; P < 0.01). There genera UCG.005 was positively correlated with proinflammatory factor IL-6 level in jejunal mucosa (r = 0.58; P < 0.01), which was negatively correlated with Rikenbacteriaceae RC9 (r = -0.62; P < 0.01). The experiment results revealed that the addition of BEC to the diet restored the production performance of the laying hens. In addition, supplementation of 2,000 mg/kg BEC modulated gut health by reducing gut damage scores and modulating microbial composition, thereby promoting recovery of laying hens after coccidia and Clostridium perfringens challenge.


Subject(s)
Coccidia , Enterococcus faecium , Gastrointestinal Microbiome , Oils, Volatile , Animals , Female , Dietary Supplements/analysis , Clostridium perfringens , Chickens/microbiology , Oils, Volatile/pharmacology , Benzoic Acid/pharmacology , Interleukin-6 , Diet/veterinary , Animal Feed/analysis
5.
Food Res Int ; 157: 111258, 2022 07.
Article in English | MEDLINE | ID: mdl-35761570

ABSTRACT

In recent years, the increase in public awareness of sports has greatly promoted the development of the sports food industry. Sports food provides nutrition to meet the metabolic and energy needs of sports people. The nutritional components of sports food can be divided into basic nutrients and functional factors. Basic nutrients refer to the nutrients or metabolites required by the human body. Functional factors are bioactive ingredients that have potential effects in improving functions of the human body, such as protection of articular cartilage and improving muscle quality. Currently, there are various forms of sports foods in the market, including sports drinks, solid sports foods, semi-solid sports foods, and sports nutrition supplements. The sports food industry has seen many opportunities such as the expanding market, manufacturing technology development, and increasing funds investment. However, it also faces many challenges, such as lack of innovation, insufficient in-depth research, risks, and safety issues. This review would provide theoretical guidance for current sports food manufacture to meet the needs of increasing sports people worldwide.


Subject(s)
Sports , Dietary Supplements , Food Industry , Humans , Nutritional Status , Sports/physiology
6.
Molecules ; 28(1)2022 Dec 30.
Article in English | MEDLINE | ID: mdl-36615494

ABSTRACT

Erdong Gao (EDG), consisting equally of roots of Asparagi Radix and Ophiopogonis Radix, is a well-known traditional Chinese formulation that has been used to treat cough and throat pain for centuries. However, the bioactive components in EDG remain to be elucidated. In this study, a rapid and effective method involving live cell bio-specific extraction and HPLC-Q-TOF-MS/MS was established to rapidly screen and identify the anti-inflammatory compounds of an EDG extract. One hundred and twenty-four components were identified in EDG extract using HPLC-Q-TOF-MS/MS analysis. After co-incubation with 16HBE, HPAEpiCs and HUVECs, which have been validated as the key target cells for pulmonary diseases, sixteen components were demonstrated to exhibit an affinity for binding to them. Furthermore, fifteen components were subsequently verified to exert anti-inflammatory effects on lipopolysaccharide (LPS)-induced 16HBE, HPAEpiCs and HUVECs via inhibiting the release of TNF-α and IL-6, indicating that nine steroidal saponins may possess potential for the treatment of lung-related diseases. Taken together, our study provides evidence that live cell biospecific extraction combined with the HPLC-Q-TOF-MS/MS technique was an efficient method for rapid screening potential bioactive components in traditional Chinese medicines and the structure activity relationship of steroidal saponins in EDG was summarized for the first time.


Subject(s)
Drugs, Chinese Herbal , Saponins , Tandem Mass Spectrometry/methods , Drugs, Chinese Herbal/chemistry , Chromatography, High Pressure Liquid/methods , Saponins/chemistry , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/chemistry , Structure-Activity Relationship
7.
Food Res Int ; 141: 110169, 2021 03.
Article in English | MEDLINE | ID: mdl-33642025

ABSTRACT

A new peptide with strong calcium binding capacity was isolated from phosvitin hydrolysates. Taking calcium chelating rate as an indicator, phosvitin hydrolysates were separated gradually by anion-exchange chromatography, gel filtration chromatography and reversed-phase high performance liquid chromatography. A peptide with a molecular weight of 1106.44402 Da was identified by liquid chromatography-electrospray/mass spectrometry (LC-ESI/MS), and its amino acid sequence was DEEENDQVK, the calcium binding capacity reached 151.10 ± 3.57 mg/g. Its chelating mechanism was investigated. Results showed that, the ß-sheet structure of peptide increased after adding calcium ion, and the main binding sites were carboxyl oxygen atom and amino nitrogen atom. In vitro simulated digestion experiments showed that, the solubility and dialysis rate of calcium in peptide-calcium chelate were higher than those in CaCO3 and D-calcium gluconate. This finding would promote the development of calcium supplements from food resources.


Subject(s)
Calcium , Protein Hydrolysates , Peptides , Phosvitin , Renal Dialysis
8.
J Sep Sci ; 44(7): 1391-1403, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33470534

ABSTRACT

Rauvolfia vomitoria is widely distributed in the tropical regions of Africa and Asia, and has been used in traditional folk medicine in China. Indole alkaloids were found to be major bioactive components, while the effects of diabetes mellitus on the pharmacokinetic parameters of the components have not been reflected in vivo. In this study, an efficient and sensitive liquid chromatography-tandem mass spectrometry method was developed and validated for the simultaneous determination of five ingredients of R. vomitoria in rats. Detection was implemented in multiple-reaction-monitoring mode with an electrospray positive-ionization source. Validation parameters were all in accordance with the current criterion. The established method was effectively employed to compare the pharmacokinetic behaviors of five alkaloids (reserpine, yohimbine, ajmaline, ajmalicine, and serpentine) between normal and type 2 diabetic rats. The single-dose pharmacokinetic parameters of the five alkaloids were determined in normal and diabetic rats after oral administration of 100 and 200 mg/kg body weight. The results indicated that diabetes mellitus significantly altered the pharmacokinetic characteristics of yohimbine, ajmaline, and ajmalicine after oral administration in rats. This is an attempt to provide some evidence for clinicians that may serve as a guide for the use of antidiabetic medicine in clinical practice.


Subject(s)
Diabetes Mellitus, Experimental/drug therapy , Diabetes Mellitus, Type 2/drug therapy , Hypoglycemic Agents/pharmacokinetics , Indole Alkaloids/pharmacokinetics , Rauwolfia/chemistry , Administration, Oral , Animals , Diabetes Mellitus, Experimental/blood , Diabetes Mellitus, Experimental/chemically induced , Diabetes Mellitus, Type 2/blood , Diabetes Mellitus, Type 2/chemically induced , Hypoglycemic Agents/administration & dosage , Hypoglycemic Agents/blood , Indole Alkaloids/administration & dosage , Indole Alkaloids/blood , Male , Molecular Structure , Plants, Medicinal/chemistry , Rats , Rats, Sprague-Dawley , Streptozocin
9.
Zhongguo Zhong Yao Za Zhi ; 45(12): 2772-2783, 2020 Jun.
Article in Chinese | MEDLINE | ID: mdl-32627450

ABSTRACT

Periplocae Cortex is a traditional Chinese medicine in China, which is mainly produced in northeast China, north China, northwest China, southwest China. In recent years, the increasing in-depth research resulted in the discovery of anti-tumor and cardiac pharmacological activities of Periplocae Cortex, which has broad application prospects. On the basis of summarizing chemical components and pharmacological effects, combined with the theoretical system of Q-marker, the quality control components of Periplocae Cortex were predicted from the aspects of the correlation between chemical composition and traditional medicinal properties, traditional efficacy, and new clinical use, plasma composition, measurable composition, storage time by analyzing literature. Among the components, periplocoside, periplocin, periplogenin, 4-methoxy salicylaldehyde showed significant activity, which provides a scientific basis for quality evaluation of Periplocae Cortex.


Subject(s)
Drugs, Chinese Herbal/analysis , Medicine, Chinese Traditional , Biomarkers , China , Quality Control
10.
J Genet Genomics ; 47(8): 477-492, 2020 08.
Article in English | MEDLINE | ID: mdl-33393464

ABSTRACT

The Arabidopsis bHLH010/089/091 (basic helix-loop-helix) genes are functionally redundant and are required for both anther development and normal expression of DYT1-activated anther-related genes. These three genes are conserved in Brassicaceae, suggesting that each of them is under selection pressure; however, little is known about the possible functional differences among these bHLH genes and between the bHLH and DYT1 genes. Here, we compared novel anther transcriptomic data sets from bHLH010/089/091 single and double mutants, with an anther transcriptomic data set from the wild type (WT) and a previously obtained anther transcriptomic data set from the bhlh010 bhlh089 bhlh091 triple mutant. The results revealed molecular phenotypes that support the functional redundancy and divergence of bHLH010, bHLH089, and bHLH091, as well as the functional overlap and difference between them and DYT1. DNA-binding analyses revealed that DYT1 and bHLH089 specifically recognize the TCATGTGC box to activate the expression of target genes, including ATA20, EXL4, and MEE48. In addition, among genes whose expression was affected in the bhlh010 bhlh089 double and bhlh010 bhlh089 bhlh091 triple mutants, genes that are involved in the stress response and cell signaling were enriched, which included 256 genes whose expression was preferentially induced by heat during early flower development. Moreover, the bhlh double mutants exhibited defective pollen development when the plants were grown under elevated temperature, suggesting that bHLH genes are important for anther gene expression under such conditions. These results are consistent with the observation that the heat-induced expression of several genes is less in the bhlh mutants than that in the WT. Therefore, our results provide important insights into the molecular mechanism underlying the activation of direct targets by DYT1-bHLH089 heterodimers and demonstrate the protective roles of bHLH010/089/091 in maintaining fertility upon heat stress.


Subject(s)
Arabidopsis Proteins/genetics , Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/genetics , Basic Helix-Loop-Helix Transcription Factors/genetics , Pollen/growth & development , Adaptation, Physiological/genetics , Arabidopsis/genetics , Arabidopsis/growth & development , Gene Expression Regulation, Plant/genetics , Heat-Shock Response/genetics , Phenotype , Pollen/genetics , Temperature
11.
Zhongguo Ying Yong Sheng Li Xue Za Zhi ; 35(5): 443-446, 2019 Sep.
Article in Chinese | MEDLINE | ID: mdl-31894678

ABSTRACT

OBJECTIVE: To investigate the effects of moxibustion on the structure and function of blood-brain barrier in Alzheimer's disease (AD) model rats. METHODS: Forty-eight SD rats were randomly divided into 4 groups: normal control group, sham operation group, model group, moxibustion group. Model group and moxibustion group rats were injected with aggregated Aß25-35 by bilateral hippocampus. In the rat model, the sham-operated group was injected with the same amount of normal saline in the bilateral hippocampus, and the normal group was not treated. After successful modeling, the moxibustion treatment was given at 2~3 cm above the Baihui, Shenshu and Yintang points of the moxibustion group rats, each time for 10 min, once a day, continuous treatment for 21 d. The Morris water maze test was used to evaluate the learning and memory ability of rats in each group. The Evans blue method was used to detect the permeability of blood-brain barrier. The ultrastructure of blood-brain barrier was observed under electron microscope. The matrix metalloproteinase 2 (MMP-2) and matrix metalloproteinase 9 (MMP-9) positive cells in hippocampus were detected by immunohistochemistry. RESULTS: Compared with the sham operation group, the escape latency was significantly increased (P<0.01), and the space exploration time was decreased (P<0.01), the learning and memory function in model group was impaired seriously, the Evans blue content in the brain was increased significantly (P<0.01), the perivascular edema became larger, and the blood-brain barrier structure function was impaired. At the same time, the positive expressions of MMP-2 and MMP-9 in hippocampus were increased significantly (P<0.01). Compared with model group, the learning and memory ability in moxibustion group rats was enhanced (P< 0.05), the content of Evans blue in the brain was decreased (P<0.05), the degree of perivascular edema was reduced, and the damage of blood-brain barrier was improved. Positive expressions of MMP-2 and MMP-9 in hippocampus were decreased (P<0.05 or P< 0.01). CONCLUSION: Moxibustion can decrease the expressions of MMP-2 and MMP-9, and reduce the damage of the structure and function of blood-brain barrier, thereby improving the learning and memory ability of AD model rats, and exerting therapeutic effects.


Subject(s)
Alzheimer Disease , Blood-Brain Barrier , Moxibustion , Alzheimer Disease/physiopathology , Alzheimer Disease/therapy , Animals , Blood-Brain Barrier/physiopathology , Disease Models, Animal , Hippocampus/cytology , Hippocampus/enzymology , Matrix Metalloproteinase 2/metabolism , Matrix Metalloproteinase 9/metabolism , Random Allocation , Rats , Rats, Sprague-Dawley , Treatment Outcome
SELECTION OF CITATIONS
SEARCH DETAIL