Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 35
Filter
1.
Phytomedicine ; 126: 155053, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38359483

ABSTRACT

BACKGROUND: Cigarette smoke impairs mucociliary clearance via mechanisms such as inflammatory response and oxidative injury, which in turn induces various respiratory diseases. Naringenin, a naturally occurring flavonoid in grapes and grapefruit, has exhibited pharmacological properties such as anti-inflammatory, expectorant, and antioxidant properties. However, it is still unclear whether naringenin protects airway cilia from injury caused by cigarette smoke. PURPOSE: This study aimed to investigate the effect of naringenin on cigarette smoke extract (CSE)-induced structural and functional abnormalities in airway cilia and highlight the potential regulatory mechanism. METHODS: Initially, network pharmacology was used to predict the mechanism of action of naringenin in ciliary disease. Next, HE staining, immunofluorescence, TEM, qRT-PCR, western blot, and ELISA were performed to assess the effects of naringenin on airway cilia in tracheal rings and air-liquid interface (ALI) cultures of Sprague Dawley rats after co-exposure to CSE (10% or 20%) and naringenin (0, 25, 50, 100 µM) for 24 h. Finally, transcriptomics and molecular biotechnology methods were conducted to elucidate the mechanism by which naringenin protected cilia from CSE-induced damage in ALI cultures. RESULTS: The targets of ciliary diseases regulated by naringenin were significantly enriched in inflammation and oxidative stress pathways. Also, the CSE decreased the number of cilia in the tracheal rings and ALI cultures and reduced the ciliary beat frequency (CBF). However, naringenin prevented CSE-induced cilia damage via mechanisms such as the downregulation of cilia-related genes (e.g., RFX3, DNAI1, DNAH5, IFT88) and ciliary marker proteins such as DNAI2, FOXJ1, and ß-tubulin IV, the upregulation of inflammatory factors (e.g., IL-6, IL-8, IL-13), ROS and MDA. IL-17 signaling pathway might be involved in the protective effect of naringenin on airway cilia. Additionally, the cAMP signaling pathway might also be related to the enhancement of CBF by naringenin. CONCLUSION: In this study, we first found that naringenin reduces CSE-induced structural disruption of airway cilia in part via modulation of the IL-17 signaling pathway. Furthermore, we also found that naringenin enhances CBF by activating the cAMP signaling pathway. This is the first report to reveal the beneficial effects of naringenin on airway cilia and the potential underlying mechanisms.


Subject(s)
Cigarette Smoking , Cilia , Flavanones , Animals , Rats , Rats, Sprague-Dawley , Cilia/metabolism , Interleukin-17/metabolism , Epithelial Cells
2.
Phytomedicine ; 124: 155256, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38181527

ABSTRACT

BACKGROUND: Alveolar macrophages are one of the momentous regulators in pulmonary inflammatory responses, which can secrete extracellular vesicles (EVs) packing miRNAs. Ferroptosis, an iron-dependent cell death, is associated with cigarette smoke-induced lung injury, and EVs have been reported to regulate ferroptosis by transporting intracellular iron. However, the regulatory mechanism of alveolar macrophage-derived EVs has not been clearly illuminated in smoking-related pulmonary ferroptosis. Despite the known anti-ferroptosis effects of naringenin in lung injury, whether naringenin controls EVs-mediated ferroptosis has not yet been explored. PURPOSE: We explore the effects of EVs from cigarette smoke-stimulated alveolar macrophages in lung epithelial ferroptosis, and elucidate the EV miRNA-mediated pharmacological mechanism of naringenin. STUDY DESIGN AND METHODS: Differential and ultracentrifugation were conducted to extract EVs from different alveolar macrophages treatment groups in vitro. Both intratracheal instilled mice and treated epithelial cells were used to investigate the roles of EVs from alveolar macrophages involved in ferroptosis. Small RNA sequencing analysis was performed to distinguish altered miRNAs in EVs. The ferroptotic effects of EV miRNAs were examined by applying dual-Luciferase reporter assay and miRNA inhibitor transfection experiment. RESULTS: Here, we firstly reported that EVs from cigarette smoke extract-induced alveolar macrophages (CSE-EVs) provoked pulmonary epithelial ferroptosis. The ferroptosis inhibitor ferrostatin-1 treatment reversed these changes in vitro. Moreover, EVs from naringenin and CSE co-treated alveolar macrophages (CSE+Naringenin-EVs) markedly attenuated the lung epithelial ferroptosis compared with CSE-EVs. Notably, we identified miR-23a-3p as the most dramatically changed miRNA among Normal-EVs, CSE-EVs, and CSE+Naringenin-EVs. Further experimental investigation showed that ACSL4, a pro-ferroptotic gene leading to lipid peroxidation, was negatively regulated by miR-23a-3p. The inhibition of miR-23a-3p diminished the efficacy of CSE+Naringenin-EVs. CONCLUSION: Our findings firstly provided evidence that naringenin elevated the EV miR-23a-3p level from CSE-induced alveolar macrophages, thereby inhibiting the mouse lung epithelial ferroptosis via targeting ACSL4, and further complemented the mechanism of cigarette-induced lung injury and the protection of naringenin in a paracrine manner. The administration of miR-23a-3p-enriched EVs has the potential to ameliorate pulmonary ferroptosis.


Subject(s)
Cigarette Smoking , Extracellular Vesicles , Ferroptosis , Flavanones , Lung Injury , MicroRNAs , Mice , Animals , Macrophages, Alveolar/metabolism , Cigarette Smoking/adverse effects , Lung/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism , Extracellular Vesicles/metabolism , Iron/metabolism
3.
J Ethnopharmacol ; 295: 115302, 2022 Sep 15.
Article in English | MEDLINE | ID: mdl-35489661

ABSTRACT

ETHNOPHARMACOLOGY RELEVANCE: Platycladus orientalis seeds are recorded in traditional Chinese medicine (TCM) formulations for modulation of mood and physical activity in "Shen Nong Ben Cao Jing" and "Compendium of Materia Medica" and so on. Recently, we identified its extracting components and looked for the potentials in treatment for depression by improving the function of monoamine neurotransmitters. AIM OF THE STUDY: We investigated the mechanism of action of the seed extracts of P. orientalis (S4) to rescue depressive behavior in a chronic, unpredicted, mild stress (CUMS)-induced model in rats. MATERIALS AND METHODS: We used ultra-fast liquid chromatography coupled with triple quadrupole-time of flight tandem mass spectrometry to analyze the chemical constituents in S4. An assay platform in zebrafish and molecular docking were used to analyze if S4 regulated rest/wake behavior and predict the biological targets which correlated with monoamine neurotransmitters. Depressive-behavior tests (body weight, sucrose preference test, tail-suspension test, forced-swimming test) were carried in the CUMS model. After behavior tests and killing, rat brains were separated into the hippocampus, frontier cortex and dorsal raphe nucleus. The main monoamine neurotransmitters and their metabolite concentrations in these three brain regions were measured by rapid resolution liquid chromatography coupled with triple quadrupole tandem mass spectrometry. RESULTS: Forty-one compounds were identified in S4, including fatty acids, terpenoids, amino acids, plant sterols and flavonoids. S4 could increase the total rest time and decrease the waking activity of zebrafish. S4 showed high correlation with adrenaline agonists, 5-hydroxytryptamine (5-HT) reuptake inhibitors and dopamine agonists. CUMS-group rats, compared with controls, had significantly decreased body weight and preference for sucrose water, whereas the immobility time in the tail-suspension test and forced-swimming test was increased. S4 could significantly rescue the increased levels of 5-HT, noradrenaline and dopamine in the prefrontal cortex and dorsal raphe nucleus. CONCLUSIONS: We demonstrated that S4 was a potential inhibitor of MAO reuptake that could rescue depression in a CUMS-model rats by restoring monoamine neurotransmitters in different encephalic regions.


Subject(s)
Antidepressive Agents , Monoamine Oxidase Inhibitors , Animals , Antidepressive Agents/chemistry , Antidepressive Agents/pharmacology , Antidepressive Agents/therapeutic use , Behavior, Animal , Body Weight , Depression/drug therapy , Depression/metabolism , Disease Models, Animal , Hippocampus/metabolism , Molecular Docking Simulation , Neurotransmitter Agents/metabolism , Phenotype , Plant Extracts/chemistry , Plant Extracts/pharmacology , Plant Extracts/therapeutic use , Rats , Serotonin/metabolism , Stress, Psychological/drug therapy , Sucrose/metabolism , Zebrafish
4.
Front Aging Neurosci ; 12: 207, 2020.
Article in English | MEDLINE | ID: mdl-32922281

ABSTRACT

Alzheimer's disease (AD) is a neurodegenerative disease characterized by neuronal loss, cognitive impairment, and aphasia. Aggregation of ß-amyloid (Aß) peptide in the brain is considered a key mechanism in the development of AD. In the past 20 years, many compounds have been developed to inhibit Aß aggregation and accelerate its degradation. Platycladus orientalis seed is a traditional Chinese medicine used to enhance intelligence and slow aging. We previously found that Platycladus orientalis seed extract (EPOS) inhibited Aß-peptide aggregation in the hippocampus and reduced cognitive deficits in 5×FAD mice. However, the mechanisms of these effects have not been characterized. To characterize the protective mechanisms of EPOS, we used a transgenic Caenorhabditis elegans CL4176 model to perform Bioactivity-guided identification of active compounds. Four active compounds, comprising communic acid, isocupressic acid, imbricatolic acid, and pinusolide, were identified using 13C-and 1H-NMR spectroscopy. Furthermore, we showed that isocupressic acid inhibited Aß generation by modulating BACE1 activity via the GSK3ß/NF-κB pathway in HEK293-APPsw cells. These findings showed that EPOS reduced cognitive deficits in an AD model via modulation of the Aß peptide aggregation pathway.

5.
Pharm Biol ; 58(1): 1006-1022, 2020 Dec.
Article in English | MEDLINE | ID: mdl-32985308

ABSTRACT

CONTEXT: Naoxintong Capsule (NXT), a Chinese medicine, has been widely used for the treatment of coronary heart disease (CHD) in clinics. OBJECTIVE: This study evaluated the cardioprotective effects of NXT alone and in combination with ticagrelor (TIC) and atorvastatin (ATO). MATERIALS AND METHODS: Qi deficiency and blood stasis rats were established by 8 weeks high fat diet feeding and 16 days exhaustive swimming and randomly divided into seven groups, that is, NXT (250, 500 and 1000 mg/kg/d), TIC (20 mg/kg/d), ATO (8 mg/kg/d), NXT (500 mg/kg/d)+TIC (20 mg/kg/d) and NXT (500 mg/kg/d)+ATO (8 mg/kg/d) group, with oral administration for 12 weeks. The contents of TC, TG, LDL-C, HDL-C, IL-1ß, IL-6, IL-8, TNF-α, AST, ALT, SOD, MDA, CK-MB, LDH, TXA2, PGI2, IgA, IgG, IgM and C3 in serum were measured. RESULTS: NXT + TIC group was significantly superior to the TIC group in decreasing the levels of TC (4.34 vs. 5.54), TG (3.37 vs. 4.66), LDL-C (1.21 vs. 1.35), LDH (4919.71vs. 5367.19) and elevating SOD level (248.54 vs. 192.04). NXT + ATO group was significantly superior to the ATO group in decreasing the levels of AST (195.931 vs. 241.63), ALT (71.26 vs. 83.16), LDH (4690.05 vs. 5285.82), TXA2 (133.73 vs. 158.67), IgG (8.08 vs. 9.80), C3 (2.03 vs. 2.35) and elevating the levels of HDL-C (1.19 vs. 0.91), SOD (241.91vs. 209.49). CONCLUSIONS: The present findings demonstrate that the combined use of NXT with TIC and ATO had better integrated regulating effects than TIC and ATO, respectively. The mechanism of action requires further research.


Subject(s)
Atorvastatin/pharmacology , Cardiotonic Agents/pharmacology , Drugs, Chinese Herbal/pharmacology , Ticagrelor/pharmacology , Animals , Atorvastatin/administration & dosage , Cardiotonic Agents/administration & dosage , Coronary Disease/prevention & control , Disease Models, Animal , Dose-Response Relationship, Drug , Drug Therapy, Combination , Drugs, Chinese Herbal/administration & dosage , Male , Qi , Rats , Rats, Sprague-Dawley , Ticagrelor/administration & dosage
6.
BMC Complement Med Ther ; 20(1): 258, 2020 Aug 18.
Article in English | MEDLINE | ID: mdl-32811507

ABSTRACT

BACKGROUND: Oral ulcer diseases are complex inflammatory diseases caused by multi-factors, which severely impact patient quality of life. Kouyanqing Granule (KYQG) has been used to treat inflammatory diseases of the mouth and throat, including recurrent aphthous stomatitis (RAS), traumatic ulcers, oral leukoplakia and so on. However, the underlying molecular mechanisms of KYQG in treating these diseases are still unclear. We aimed to explore the possible mechanisms in KYQG for the treatment of oral ulcers. METHODS: An innovative network pharmacology method was established by incorporating targets searching and fishing, network analysis, and silico validation to discover the pharmacological mechanisms of action of KYQG for the treatment of oral ulcers. Then, we verified the reliability of this method by an animal experiment. RESULTS: Our data indicated that a total of 47 key targets were screened, which mainly involved in three function modules including the inhibition of inflammation, the regulation of immunological response, and the suppression of oxidative stress. The implementation of these functions relies on the complex multi-pathways network, especially TNF signaling pathway and HIF-1 signaling pathway. The results of the experimental verification indicated that KYQG significantly inhibited the serum levels of cyclooxygenase-2 (COX2), matrix metalloproteinase 9 (MMP9) and tumor necrosis factor-alpha (TNF-α) in rats with oral ulcer. CONCLUSION: KYQG exhibited the therapeutic effects on oral ulcers probably by inhibiting inflammation, regulating immunological response, and suppressing oxidative stress through a complex multi-pathways network. Particularly, TNF signaling pathway and HIF-1 signaling pathway may play crucial roles in the protection of KYQG against oral ulcers. This work not only offers a method for understanding the functional mechanisms of KYQG for treating oral ulcer diseases from a multi-scale perspective but also may provide an efficient way for research and development of complex composition formula.


Subject(s)
Drugs, Chinese Herbal/chemistry , Drugs, Chinese Herbal/pharmacology , Oral Ulcer/drug therapy , Animals , Disease Models, Animal , Humans , Male , Molecular Structure , Protein Interaction Maps , Rats , Rats, Sprague-Dawley
7.
Front Pharmacol ; 11: 824, 2020.
Article in English | MEDLINE | ID: mdl-32694994

ABSTRACT

Oral ulcers are the most prevalent oral mucosal diseases globally, and no specific treatment schemes are currently available due to the complexity of oral ulcer diseases. Sleep deprivation increases the risk of a deterioration in oral health. Kouyanqing Granule (KYQG) has been used for decades in China to treat inflammatory diseases of the mouth and throat associated with the hyperactivity of fire due to yin deficiency syndrome. However, the mechanisms underlying the effects of KYQG in the treatment of oral ulcers are still unclear. The aims of this study were to investigate whether KYQG treatment could attenuate the symptoms of oral ulcers worsened by sleep deprivation and identify the involved metabolic pathways. First, we conducted chemical profiling of KYQG via UPLC-MS analysis. We then combined pharmacological and metabolomics approaches in a phenol-induced rat model of oral ulcers worsened by sleep deprivation. A total of 79 compounds were initially identified. Our observations showed that KYQG treatment induced a significantly higher healing rate in oral ulcers worsened by sleep deprivation. KYQG significantly reduced the levels of 5-HT and GABA in serum, and only decreased the 5-HT level in brain tissue after phenol injury followed by sleep deprivation. Moreover, KYQG administration significantly suppressed systemic inflammation by inhibiting TNF-α, IL-1ß, IL-6, IL-18, and MCP-1. Immunohistochemical analysis further revealed that KYQG inhibited IL-6 expression in buccal mucosa tissues. KYQG treatment also significantly decreased the serum levels of ACTH, CORT, IgM, and 8-OHdG. Serum metabolomics analysis showed that a total of 30 metabolites showed significant differential abundances under KYQG intervention, while metabolic pathway analysis suggested that the altered metabolites were associated with the dysregulation of eight metabolic pathways. Taken together, our results indicated that KYQG attenuates the symptoms of oral ulcers worsened by sleep deprivation probably through the regulation of the neuroimmunoendocrine system, oxidative stress levels, and tryptophan metabolism. This study also provides a novel approach for addressing the increased health risks resulting from sleep deficiency using an herbal medicine formula.

8.
Molecules ; 24(23)2019 Nov 27.
Article in English | MEDLINE | ID: mdl-31783502

ABSTRACT

Hawthorn seed can be used to produce various bioactive compounds through destructive distillation. In this study, an accurate and feasible analytical method based on a gas chromatography mass spectrometer (GC-MS) was developed for simultaneous determination of six major compounds (contributing to more than 3% in total peak area) in destructive distillation extracts of hawthorn seed collected at different temperatures ranging from 150 to 270 °C. Then, a broth microdilution method coupled with grey correlation analysis was engaged in the evaluation of their antimicrobial activities and the screening of primarily active compounds. Results indicate that the extract collected from 211 to 230 °C had the highest content of six major compounds (furfural, 2-methoxyphenol, 2-methoxy-4-methylphenol, 4-ethyl-2-methoxyphenol, 2,6-dimethoxyphenol, and 5-tertbutylpyrogallol) and the strongest antibacterial activity. Besides, 2,6-dimethoxyphenol was found to be a potential compound in inhibiting the growth of vaginitis pathogens. This study provided an optimum temperature for the destructive distillation of hawthorn seed, reducing the waste of energy, and saving the cost of production in the hawthorn industry.


Subject(s)
Anti-Bacterial Agents/pharmacology , Crataegus/chemistry , Gas Chromatography-Mass Spectrometry/methods , Seeds/chemistry , Anti-Bacterial Agents/chemistry , Cresols/chemistry , Cresols/isolation & purification , Cresols/pharmacology , Distillation/methods , Furaldehyde/chemistry , Furaldehyde/isolation & purification , Furaldehyde/pharmacology , Guaiacol/chemistry , Guaiacol/isolation & purification , Guaiacol/pharmacology , Plant Extracts/chemistry , Plant Extracts/pharmacology , Pyrogallol/analogs & derivatives , Pyrogallol/chemistry , Pyrogallol/isolation & purification , Pyrogallol/pharmacology
9.
J Food Sci ; 84(12): 3843-3849, 2019 Dec.
Article in English | MEDLINE | ID: mdl-31762039

ABSTRACT

Exocarpium Citri Grandis (ECG) is a famous traditional Chinese medicine, which has been commonly used to alleviate cough and phlegm for more than several hundred years, and total flavonoids are the main effective components of this medicine. This study investigated the effects of total flavonoids from ECG (TFECG) on pulmonary inflammation and oxidative stress induced by PM2.5 in mice. Model mice received an intratracheal instillation of PM2.5 (10 mg/mL) once at day 0. Bronchoalveolar lavage fluid (BALF) was collected after 72 hr to measure the total number of white blood cell (WBC), neutrophils (NEUT), lymphocytes (LYMPH), and monocytes (MONO). The levels of tumor necrosis factor-α (TNF-α), interleukin 1ß (IL-1ß), interleukin-6 (IL-6), and interleukin-18 (IL-18) in BALF were quantified by using enzyme-linked immunosorbent assay kits. Lung tissues were used to determine the contents of total protein (TP), malondialdehyde (MDA), nitric oxide (NO), reduced glutathione (GSH), oxidized glutathione (GSSG) and the activities of superoxide dismutase (SOD), lactate dehydrogenase (LDH), Glutathione Peroxidase (GSH-Px), and inducible nitric oxide synthase (iNOS). We found that TFECG significantly inhibited PM2.5 -stimulated overproduction of TNF-α, IL-1ß, IL-6, and IL-18 and increased the numbers of WBC, NEUT, LYMPH, and MONO in BALF. TFECG observably relieved the PM2.5 -induced increases in the contents of TP, MDA, and NO, and the activities of LDH and iNOS. TFECG also alleviated PM2.5 -induced decreases in the activities of iNOS and GSH-Px as well as GSH/GSSG ratio. The results indicate that TFECG has anti-inflammatory and antioxidant activities, which may potentially contribute to the treatment of PM2.5 -induced lung injury. PRACTICAL APPLICATION: Exocarpium Citri Grandis (ECG) is rich in flavonoids, which are beneficial to improve anti-inflammation and antioxidant capacity. We proved that total flavonoids of ECG had a positive therapeutic effect on PM2.5 -induced lung injury, which expands the potential applications of ECG in the dietary supplement industries.


Subject(s)
Air Pollutants/toxicity , Drugs, Chinese Herbal/pharmacology , Flavonoids/pharmacology , Oxidative Stress , Pneumonia , Animals , Cytokines/metabolism , Lung/drug effects , Lung/physiology , Mice , Oxidative Stress/drug effects , Oxidative Stress/physiology , Pneumonia/chemically induced , Pneumonia/physiopathology
10.
J Med Food ; 22(9): 963-970, 2019 Sep.
Article in English | MEDLINE | ID: mdl-31259654

ABSTRACT

Naringin and its aglycone, naringenin, occur naturally in our regular diet and traditional Chinese medicines. This study aimed to detect an effective therapeutic approach for cough variant asthma (CVA) through evaluating the relaxant effect of these two bioactive herbal monomers as antitussive and antiasthmatic on rat tracheal smooth muscle. The relaxant effect was determined by measuring muscular tension with a mechanical recording system in rat tracheal rings. Cytosolic Ca2+ concentration was measured using a confocal imaging system in primary cultured tracheal smooth muscle cells. In rat tracheal rings, addition of both naringin and naringenin could concentration dependently relax carbachol (CCh)-evoked tonic contraction. This epithelium-independent relaxation could be suppressed by BaCl2, tetraethylammonium, and iberiotoxin (IbTX), but not by glibenclamide. After stimulating primary cultured tracheal smooth muscle cells by CCh or high KCl, the intracellular Ca2+ increase could be inhibited by both naringin and naringenin, respectively. This reaction was also suppressed by IbTX. These results demonstrate that both naringin and naringenin can relax tracheal smooth muscle through opening big conductance Ca2+-activated K+ channel, which mediates plasma membrane hyperpolarization and reduces Ca2+ influx. Our data indicate a potentially effective therapeutic approach of naringin and naringenin for CVA.


Subject(s)
Anti-Asthmatic Agents/administration & dosage , Antitussive Agents/administration & dosage , Asthma/drug therapy , Flavanones/administration & dosage , Large-Conductance Calcium-Activated Potassium Channel alpha Subunits/metabolism , Plant Extracts/administration & dosage , Trachea/drug effects , Animals , Asthma/genetics , Asthma/metabolism , Asthma/physiopathology , Calcium/metabolism , Citrus/chemistry , Humans , Large-Conductance Calcium-Activated Potassium Channel alpha Subunits/genetics , Male , Muscle Relaxation/drug effects , Rats , Rats, Sprague-Dawley , Trachea/physiopathology
11.
Biomed Pharmacother ; 118: 109187, 2019 Oct.
Article in English | MEDLINE | ID: mdl-31302425

ABSTRACT

Dan-hong injection (DHI) is extracted from Salvia miltiorrhiza (SM) and Carthamus tinctorius (CT) and is widely used for the treatment of cardiovascular diseases. Our previous results showed DHI could improve hemorheology in rats. Since complex cellular interactions such as inflammation and oxidative stress are believed to be implicated in the pathogenesis of cardiovascular events, investigation of such pathological factors will contribute substantially to the understanding of the features and mechanisms of DHI. Therefore, in this study we used a rat model of blood stasis to explore the overall effects of DHI by detecting twenty three indexes, which were related to inflammation, immune response, vascular endothelial function, myocardial energy metabolism, oxidative stress, platelet aggregation, liver and renal function. Meanwhile, the interaction between SM and CT was discussed by comparing the effects of each single herb. DHI could significantly decrease the serum contents of IL-1ß, TNF-α, IL-6, IL-8, IgM, IgG, IgA, MPO, hs-CRP, MDA, LDH, CK-MB, PAF, ALP and Cr, while elevate NO, SOD, TP and UA levels, indicating that DHI could inhibit inflammation and platelet aggregation, thereby relieving immune response and peroxidation, protecting vascular endothelial and organ function, and then prevent and treat cardiovascular diseases. In terms of compatibility, SM and CT showed complementary effects on markers of inflammatory and oxidative status, vascular endothelial damage and myocardial energy metabolism. On the other hand, they counteracted each other and SM reduced the side effects of creatinine caused by CT. This study contributes to comprehensively understand the pharmacodynamics effects and mechanism of DHI.


Subject(s)
Carthamus tinctorius/chemistry , Coronary Disease/prevention & control , Drugs, Chinese Herbal/pharmacology , Endothelium, Vascular/drug effects , Hemostasis/drug effects , Salvia miltiorrhiza/chemistry , Animals , Coronary Disease/blood , Coronary Disease/immunology , Dose-Response Relationship, Drug , Drugs, Chinese Herbal/isolation & purification , Endothelium, Vascular/immunology , Endothelium, Vascular/metabolism , Hemostasis/immunology , Inflammation , Male , Oxidative Stress/drug effects , Rats, Sprague-Dawley
12.
Phytomedicine ; 63: 153004, 2019 Oct.
Article in English | MEDLINE | ID: mdl-31301536

ABSTRACT

BACKGROUND: PM2.5 is closely related to the incidence and mortality of respiratory diseases. Diesel particulate matter (DPM) is the main component of particulate air pollution and an important source of PM2.5. HYPOTHESIS/PURPOSE: This study mainly explored the effect of DPM on airway surface liquid (ASL) secretion and the regulation of naringin in this process, to evaluate therapeutic potentials of naringin for the treatment of abnormal secretion of the respiratory tract caused by PM2.5. METHODS: The concentration of lysozyme was measured by Lysozyme Assay Kit. Total protein content was determined by the BCA Protein Assay Kit. The concentration of cAMP and MUC5AC, expressions of CFTR, AQP1, and AQP5 proteins were measured by ELISA. Expressions of CFTR, AQP1 and AQP5 mRNA were determined by qPCR. Amount of CFTR on the cell membrane was determined by immunofluorescence. RESULTS: The in vitro and in vivo studies had indicated that DPM could inhibit ASL secretion and increased the viscosity of the liquid. Naringin had the functions to attenuate DPM-induced injury, reduce liquid viscosity by reducing MUC5AC and total protein secretion, increase DPM-induced CFTR, AQP1, and AQP5 mRNA and protein expression, positively regulate apical CFTR insertion and promote CFTR activation by increasing intracellular cAMP. CONCLUSION: These results demonstrated that naringin had regulating effects on the DPM-induced abnormal secretion of the respiratory tract.


Subject(s)
Air Pollutants/toxicity , Flavanones/pharmacology , Lung/drug effects , Particulate Matter/toxicity , Vehicle Emissions , Animals , Aquaporin 1/genetics , Aquaporin 1/metabolism , Aquaporin 5/genetics , Aquaporin 5/metabolism , Cell Line , Cystic Fibrosis Transmembrane Conductance Regulator/genetics , Cystic Fibrosis Transmembrane Conductance Regulator/metabolism , Epithelial Cells/drug effects , Humans , Lung/metabolism , Lung/pathology , Male , Mice, Inbred BALB C , Mucin 5AC/metabolism
13.
Molecules ; 23(5)2018 May 16.
Article in English | MEDLINE | ID: mdl-29772655

ABSTRACT

Hypericum japonicum is traditionally used as a folk medicine to treat cholestasis and hepatitis. Quercetin 7-rhamnoside (Q7R) is one of the main flavonoid components of Hypericum japonicum and has been rarely studied. The aim of the present study was to evaluate the antioxidant activity and hepatoprotective potential of Q7R. In the in vitro experiments, DPPH, ABTS and ferric reducing antioxidant power (FRAP) assays were first performed to assess the antioxidant properties of Q7R, and then a H2O2-induced oxidative damage cellular model was used to determine the cytoprotective and antioxidant properties of Q7R in human liver L-02 cells. In the in vivo experiment, the hepatoprotective activity of Q7R was evaluated by carbon tetrachloride (CCl4)-induced liver damage model in mice. The results of the three in vitro assays (DPPH, ABTS and FRAP) demonstrated that Q7R significantly exhibited antioxidant activity. The cell experiment results showed that Q7R possessed cytoprotective and antioxidant effects on H2O2-treated L-02 cells. In the in vivo experiments, Q7R suppressed the up-regulation of serum activities of ALT, AST, LDH and triglyceride (TG) levels with dose-dependency. Q7R down-regulated the production of MDA and increased the hepatic GSH content and antioxidant enzymes CAT activities. Hepatic morphological analysis was also performed to confirm the biochemical changes. In summary, these results suggested that Q7R could be considered as a potential source of natural antioxidants, and may become a promising candidate for the treatment of liver injury in the future.


Subject(s)
Antioxidants/administration & dosage , Carbon Tetrachloride/adverse effects , Chemical and Drug Induced Liver Injury/prevention & control , Hepatocytes/cytology , Quercetin/analogs & derivatives , Animals , Antioxidants/pharmacology , Cell Line , Chemical and Drug Induced Liver Injury/blood , Disease Models, Animal , Dose-Response Relationship, Drug , Hepatocytes/drug effects , Humans , Hydrogen Peroxide/adverse effects , In Vitro Techniques , Malondialdehyde/blood , Mice , Quercetin/administration & dosage , Quercetin/pharmacology
14.
Molecules ; 23(5)2018 05 03.
Article in English | MEDLINE | ID: mdl-29751521

ABSTRACT

Discovery and identification of three bioactive compounds affecting endothelial function in Ginkgo biloba Extract (GBE) based on chromatogram-bioactivity correlation analysis. Three portions were separated from GBE via D101 macroporous resin and then re-combined to prepare nine GBE samples. 21 compounds in GBE samples were identified through UFLC-DAD-Q-TOF-MS/MS. Correlation analysis between compounds differences and endothelin-1 (ET-1) in vivo in nine GBE samples was conducted. The analysis results indicated that three bioactive compounds had close relevance to ET-1: Kaempferol-3-O-α-l-glucoside, 3-O-{2-O-{6-O-[P-OH-trans-cinnamoyl]-ß-d-glucosyl}-α-rhamnosyl} Quercetin isomers, and 3-O-{2-O-{6-O-[P-OH-trans-cinnamoyl]-ß-d-glucosyl}-α-rhamnosyl} Kaempferide. The discovery of bioactive compounds could provide references for the quality control and novel pharmaceuticals development of GRE. The present work proposes a feasible chromatogram-bioactivity correlation based approach to discover the compounds and define their bioactivities for the complex multi-component systems.


Subject(s)
Endothelium/drug effects , Endothelium/metabolism , Ginkgo biloba/chemistry , Plant Extracts/chemistry , Plant Extracts/pharmacology , Chromatography, High Pressure Liquid , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization , Tandem Mass Spectrometry
15.
Chin J Nat Med ; 16(12): 916-925, 2018 Dec.
Article in English | MEDLINE | ID: mdl-30595216

ABSTRACT

Schisandra chinensis, a traditional Chinese medicine (TCM), has been used to treat sleep disorders. Zebrafish sleep/wake behavioral profiling provides a high-throughput platform to screen chemicals, but has never been used to study extracts and components from TCM. In the present study, the ethanol extract of Schisandra chinensis and its two main lignin components, schisandrin and schisandrin B, were studied in zebrafish. We found that the ethanol extract had bidirectional improvement in rest and activity in zebrafish. Schisandrin and schisandrin B were both sedative and active components. We predicted that schisandrin was related to serotonin pathway and the enthanol extract of Schisandra chinensis was related to seoronin and domapine pathways using a database of zebrafish behaviors. These predictions were confirmed in experiments using Caenorhabditis elegans. In conclusion, zebrafish behavior profiling could be used as a high-throughput platform to screen neuroactive effects and predict molecular pathways of extracts and components from TCM.


Subject(s)
Behavior, Animal/drug effects , Central Nervous System Agents/pharmacology , Drugs, Chinese Herbal/pharmacology , Plant Extracts/pharmacology , Schisandra/chemistry , Zebrafish/physiology , Animals , Caenorhabditis elegans , Central Nervous System Agents/chemistry , Central Nervous System Agents/isolation & purification , Cyclooctanes/analysis , Cyclooctanes/isolation & purification , Cyclooctanes/pharmacology , Drugs, Chinese Herbal/chemistry , Lignans/analysis , Lignans/isolation & purification , Lignans/pharmacology , Plant Extracts/chemistry , Plant Extracts/isolation & purification , Polycyclic Compounds/analysis , Polycyclic Compounds/isolation & purification , Polycyclic Compounds/pharmacology
16.
Cell Physiol Biochem ; 44(3): 1146-1160, 2017.
Article in English | MEDLINE | ID: mdl-29179179

ABSTRACT

BACKGROUND/AIMS: Sputum symptoms are commonly seen in the elderly. This study aimed to identify an efficacious expectorant treatment stratagem through evaluating the secretion-promoting activation and cystic fibrosis transmembrane conductance regulator (CFTR) expression of the bioactive herbal monomer naringenin. METHODS: Vectorial Cl- transport was determined by measuring short-circuit current (ISC) in rat airway epithelium. cAMP content was measured by ELISA in primary cultured epithelial cells and Calu-3 cells. CFTR expression in Calu-3 cells was determined by qPCR. RESULTS: Addition of naringenin to the basolateral side of the rat airway led to a concentration-dependent sustained increase in ISC. The current was suppressed when exposed to Cl--free solution or by bumetanide, BaCl2, and DPC but not by DIDS and IBMX. Forskolin-induced ISC increase and CFTRinh-172/MDL-12330A-induced ISC inhibition were not altered by naringenin. Intracellular cAMP content was significantly increased by naringenin. With lipopolysaccharide stimulation, CFTR expression was significantly reduced, and naringenin dose-dependently enhanced CFTR mRNA expression. CONCLUSION: These results demonstrate that naringenin has the ability to stimulate Cl- secretion, which is mediated by CFTR through a signaling pathway by increasing cAMP content. Moreover, naringenin can increase CFTR expression when organism CFTR expression is seriously hampered. Our data suggest a potentially effective treatment strategy for sputum.


Subject(s)
Cystic Fibrosis Transmembrane Conductance Regulator/metabolism , Epithelial Cells/drug effects , Flavanones/pharmacology , Animals , Barium Compounds/pharmacology , Benzoates/pharmacology , Cells, Cultured , Chloride Channels/antagonists & inhibitors , Chloride Channels/metabolism , Chlorides/pharmacology , Colforsin/pharmacology , Cyclic AMP/analysis , Cystic Fibrosis Transmembrane Conductance Regulator/antagonists & inhibitors , Cystic Fibrosis Transmembrane Conductance Regulator/genetics , Epithelial Cells/cytology , Epithelial Cells/metabolism , Female , Humans , Imines/pharmacology , Ion Transport/drug effects , Male , Microscopy, Fluorescence , Rats , Rats, Sprague-Dawley , Real-Time Polymerase Chain Reaction , Thiazolidines/pharmacology , Trachea/cytology , ortho-Aminobenzoates/pharmacology
17.
Sci Rep ; 7: 46266, 2017 04 10.
Article in English | MEDLINE | ID: mdl-28393856

ABSTRACT

Since traditional Chinese medicine (TCM) is a complex mixture of multiple components, the application of methodologies for evaluating single-components Western medicine in TCM studies may have certain limitations. Appropriate strategies that recognize the integrality of TCM and connect to TCM theories remain to be developed. Here we use multiple unique approaches to study the scientific connotation of a TCM formula Dan-hong injection (DHI) without undermining its prescription integrity. The blood circulation improving and healing promoting effects of DHI were assessed by a qi stagnation blood stasis rat model and a mouse model of laser irradiation induced cerebral microvascular thrombosis. By UFLC-PDA-Triple Q-TOF-MS/MS and relevance analysis between chemical characters and biological effects, 82 chemical constituents and nine core components, whose blood circulation promoting effects were found comparable to that of whole DHI, were successfully identified. What's more, the rationality of DHI prescription compatibility could be reflected not only in the maximum efficacy of the original ratio, but also in the interactions of compounds from different ingredient herbs, such as complementary activities and facilitating tissues distribution. This study provides scientific evidences in explanation of the clinical benefits of DHI, and also gives a good demonstration for the comprehensive evaluation of other TCM.


Subject(s)
Drugs, Chinese Herbal/chemistry , Drugs, Chinese Herbal/pharmacology , Animals , Blood Coagulation/drug effects , Chromatography, High Pressure Liquid , Disease Models, Animal , Drugs, Chinese Herbal/administration & dosage , Drugs, Chinese Herbal/pharmacokinetics , Hemostasis/drug effects , Humans , Intracranial Thrombosis/blood , Intracranial Thrombosis/drug therapy , Male , Medicine, Chinese Traditional , Mice , Molecular Structure , Phytochemicals/chemistry , Phytochemicals/pharmacology , Rats
18.
Sci Rep ; 5: 18080, 2015 Dec 10.
Article in English | MEDLINE | ID: mdl-26657159

ABSTRACT

Kouyanqing Granule (KYQG) is a traditional Chinese herbal formula composed of Flos lonicerae (FL), Radix scrophulariae (RS), Radix ophiopogonis (RO), Radix asparagi (RA), and Radix et rhizoma glycyrrhizae (RG). In contrast with the typical method of separating and then biologicalily testing the components individually, this study was designed to establish an approach in order to define the core bioactive ingredients of the anti-inflammatory effects of KYQG based on the relevance analysis between chemical characters and biological effects. Eleven KYQG samples with different ingredients were prepared by changing the ratios of the 5 herbs. Thirty-eight ingredients in KYQG were identified using Ultra-fast liquid chromatography-Diode array detector-Quadrupole-Time-of-flight-Tandem mass spectrometry (UFLC-DAD-Q-TOF-MS/MS) technology. Human oral keratinocytes (HOK) were cultured for 24 hours with 5% of Cigarette smoke extract (CSE) to induce inflammation stress. Interleukin-1ß (IL-1ß), interleukin-6 (IL-6), interleukin-8 (IL-8), and tumour necrosis factor-α (TNF-α) were evaluated after treatment with the eleven KYQG samples. Grey relational analysis(GRA), Pearson's correlations (PCC), and partial least-squares (PLS) were utilized to evaluate the contribution of each ingredient. The results indicated that KYQG significantly reduced interleukin-1ß, interleukin-6, interleukin-8, and tumour necrosis factor-α levels, in which lysine, γ-aminobutyric acid, chelidonic acid, tyrosine, harpagide, neochlorogenic acid, chlorogenic acid, cryptochlorogenic acid, isoquercitrin, luteolin-7-o-glucoside, 3,4-dicaffeoylquinic acid, 3,5-dicaffeoylquinic acid, angoroside C, harpagoside, cinnamic acid, and ruscogenin play a vital role.


Subject(s)
Anti-Inflammatory Agents/pharmacology , Drug Discovery/methods , Drugs, Chinese Herbal/chemistry , Keratinocytes/drug effects , Anti-Inflammatory Agents/chemistry , Anti-Inflammatory Agents/isolation & purification , Cells, Cultured , Chlorogenic Acid/analogs & derivatives , Chlorogenic Acid/chemistry , Chlorogenic Acid/isolation & purification , Chlorogenic Acid/pharmacology , Chromatography, Liquid/methods , Cinnamates/chemistry , Cinnamates/isolation & purification , Cinnamates/pharmacology , Flavones/chemistry , Flavones/isolation & purification , Flavones/pharmacology , Glucosides/chemistry , Glucosides/isolation & purification , Glucosides/pharmacology , Humans , Interleukin-1beta/metabolism , Interleukin-6/metabolism , Interleukin-8/metabolism , Keratinocytes/cytology , Keratinocytes/metabolism , Molecular Structure , Smoke , Spirostans/chemistry , Spirostans/isolation & purification , Spirostans/pharmacology , Tandem Mass Spectrometry/methods , Tobacco Products , Tumor Necrosis Factor-alpha/metabolism
19.
Pulm Pharmacol Ther ; 33: 59-65, 2015 Aug.
Article in English | MEDLINE | ID: mdl-26169899

ABSTRACT

Naringin, a well known component isolated from Exocarpium Citri Grandis, has significant antitussive effects. Recently, Naringin exhibited novel anti-inflammatory effect in chronic inflammatory diseases. In this work, we firstly evaluated the effects of naringin on enhanced cough, airway hyper-responsiveness (AHR), and airway inflammation in an ovalbumin-induced experimental cough-variant asthma (CVA) model in guinea pigs. We investigated the effect of naringin (18.4 mg/kg, per os, single dose or consecutively) on cough to inhaled capsaicin after challenge with an aerosolized antigen in actively sensitized guinea pigs. The effect of naringin on AHR to inhaled methacholine was evaluated 24 h after cough determination. Airway inflammation was assessed via bronchoalveolar lavage fluid (BALF) cytology and lung histopathology. Naringin, given consecutively, significantly reduced ovalbumin-induced enhanced cough and AHR, inhibited the increases in the leukocytes, interleukin-4 (IL-4), IL-5, and IL-13 in BALF compared with the model group. Moreover, the pathologic changes in lung tissues were clearly ameliorated by naringin treatment. These results suggest that naringin may be a beneficial agent for CVA treatment.


Subject(s)
Anti-Inflammatory Agents/pharmacology , Asthma/drug therapy , Cough/drug therapy , Flavanones/pharmacology , Animals , Asthma/immunology , Asthma/pathology , Bronchial Hyperreactivity/drug therapy , Bronchial Hyperreactivity/immunology , Bronchoalveolar Lavage Fluid/immunology , Capsaicin/administration & dosage , Cough/immunology , Disease Models, Animal , Guinea Pigs , Inflammation/drug therapy , Inflammation/immunology , Inflammation/pathology , Male , Ovalbumin/immunology
20.
PLoS One ; 9(11): e112675, 2014.
Article in English | MEDLINE | ID: mdl-25396725

ABSTRACT

Compound xueshuantong capsule (CXC) is an oral traditional Chinese herbal formula (CHF) comprised of Panax notoginseng (PN), Radix astragali (RA), Salvia miltiorrhizae (SM), and Radix scrophulariaceae (RS). The present investigation was designed to explore the core bioactive components promoting blood circulation in CXC using high-performance liquid chromatography (HPLC) and animal studies. CXC samples were prepared with different proportions of the 4 herbs according to a four-factor, nine-level uniform design. CXC samples were assessed with HPLC, which identified 21 components. For the animal experiments, rats were soaked in ice water during the time interval between two adrenaline hydrochloride injections to reduce blood circulation. We assessed whole-blood viscosity (WBV), erythrocyte aggregation and red corpuscle electrophoresis indices (EAI and RCEI, respectively), plasma viscosity (PV), maximum platelet aggregation rate (MPAR), activated partial thromboplastin time (APTT), and prothrombin time (PT). Based on the hypothesis that CXC sample effects varied with differences in components, we performed grey relational analysis (GRA), principal component analysis (PCA), ridge regression (RR), and radial basis function (RBF) to evaluate the contribution of each identified component. Our results indicate that panaxytriol, ginsenoside Rb1, angoroside C, protocatechualdehyde, ginsenoside Rd, and calycosin-7-O-ß-D-glucoside are the core bioactive components, and that they might play different roles in the alleviation of circulation dysfunction. Panaxytriol and ginsenoside Rb1 had close relevance to red blood cell (RBC) aggregation, angoroside C was related to platelet aggregation, protocatechualdehyde was involved in intrinsic clotting activity, ginsenoside Rd affected RBC deformability and plasma proteins, and calycosin-7-O-ß-D-glucoside influenced extrinsic clotting activity. This study indicates that angoroside C, calycosin-7-O-ß-D-glucoside, panaxytriol, and protocatechualdehyde may have novel therapeutic uses.


Subject(s)
Blood Circulation/drug effects , Drugs, Chinese Herbal/chemistry , Drugs, Chinese Herbal/pharmacology , Glucosides/pharmacology , Isoflavones/pharmacology , Animals , Blood Viscosity/drug effects , Capsules/administration & dosage , Chromatography, High Pressure Liquid , Coumaric Acids/pharmacology , Drugs, Chinese Herbal/administration & dosage , Electrophoresis , Enediynes , Erythrocyte Aggregation/drug effects , Fatty Alcohols , Humans , Partial Thromboplastin Time , Principal Component Analysis , Rats , Regression Analysis , Trisaccharides/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL