Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Publication year range
1.
Sci Total Environ ; 634: 1034-1041, 2018 Sep 01.
Article in English | MEDLINE | ID: mdl-29660861

ABSTRACT

Potential risk of endocrine disrupting compounds on non-target organisms has received extensive attentions in recent years. The present work aimed to investigate the behavior and effect of a synthetic steroid estrogen quinestrol in duckweed Spirodela polyrhiza L. Experimental results showed that quinestrol could be uptaken, accumulated, and biotransformed into 17 α-ethynylestradiol in S. polyrhiza L. The accumulation of quinestrol had a positive relation to the exposure concentration. The bioaccumulation rate was higher when the duckweed was exposed to quinestrol solutions at low concentrations than at high concentration. While the transformation of quinestrol showed no concentration-dependent manner. Quinestrol reduced the biomass and pigment content and increased superoxide dismutase and catalase activities and malondialdehyde contents in the duckweed. The results demonstrated that quinestrol could be accumulated and biotransformed in aquatic plant S. polyrhiza L. This work would provide supplemental data on the behavior of this steroid estrogen compound in aquatic system.


Subject(s)
Araceae/drug effects , Estrogens/toxicity , Quinestrol/toxicity , Water Pollutants, Chemical/toxicity , Araceae/physiology , Endocrine Disruptors/toxicity , Malondialdehyde/metabolism , Superoxide Dismutase/metabolism
2.
Pest Manag Sci ; 68(2): 170-7, 2012 Feb.
Article in English | MEDLINE | ID: mdl-22002762

ABSTRACT

BACKGROUND: Glyphosate is a non-selective, foliar-applied, systemic herbicide that kills weeds by inhibiting the synthesis of 5-enolpyruvylshikimate-3-phosphate synthase. Urea phosphate (UPP), made by the reaction of urea with phosphoric acid, was applied as an adjuvant for glyphosate in this study. Experiments in the greenhouse and the field were conducted to determine the effects of UPP by comparing the efficacies of glyphosate plus UPP, glyphosate plus 1-aminomethanamide dihydrogen tetraoxosulfate (AMADS) and Roundup. RESULTS: The optimum concentration of UPP in glyphosate solution was 2.0% when UPP was used as an adjuvant. The ED50 values for glyphosate-UPP were 291.7 and 462.4 g AI ha(-1) in the greenhouse and the field respectively, while the values for Roundup were 448.2 and 519.6 g AI ha(-1). The ED50 values at 2 weeks after treatment (WAT) and 3 WAT were lowered when UPP was used as an adjuvant in the greenhouse and field study, and the glyphosate+UPP was absorbed over a 2 week period. UPP may increase the efficacy by causing severe cuticle disruption or accelerating the initial herbicide absorption. The result also showed that UPP could reduce the binding behaviour of Ca2+ to glyphosate. CONCLUSION: The application of UPP as an adjuvant could increase the efficacy of glyphosate and make it possible to achieve effective control of weeds with glyphosate at lower dose. Moreover, UPP showed less causticity to spraying tools and presented less of a health hazard. Therefore, UPP is accepted as being a new, effective and environmentally benign adjuvant for glyphosate.


Subject(s)
Formamides/administration & dosage , Glycine/analogs & derivatives , Herbicides , Pesticide Synergists/administration & dosage , Phosphoric Acids/administration & dosage , Plant Weeds , Urea/administration & dosage , Calcium Chloride , Glyphosate
SELECTION OF CITATIONS
SEARCH DETAIL