Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Type of study
Language
Journal
Affiliation country
Publication year range
1.
Small ; 19(22): e2300592, 2023 06.
Article in English | MEDLINE | ID: mdl-36850031

ABSTRACT

The recurrence of biofilm-associated infections (BAIs) remains high after implant-associated surgery. Biofilms on the implant surface reportedly shelter bacteria from antibiotics and evade innate immune defenses. Moreover, little is currently known about eliminating residual bacteria that can induce biofilm reinfection. Herein, novel "interference-regulation strategy" based on bovine serum albumin-iridium oxide nanoparticles (BIONPs) as biofilm homeostasis interrupter and immunomodulator via singlet oxygen (1 O2 )-sensitized mild hyperthermia for combating BAIs is reported. The catalase-like BIONPs convert abundant H2 O2 inside the biofilm-microenvironment (BME) to sufficient oxygen gas (O2 ), which can efficiently enhance the generation of 1 O2 under near-infrared irradiation. The 1 O2 -induced biofilm homeostasis disturbance (e.g., sigB, groEL, agr-A, icaD, eDNA) can disrupt the sophisticated defense system of biofilm, further enhancing the sensitivity of biofilms to mild hyperthermia. Moreover, the mild hyperthermia-induced bacterial membrane disintegration results in protein leakage and 1 O2 penetration to kill bacteria inside the biofilm. Subsequently, BIONPs-induced immunosuppressive microenvironment re-rousing successfully re-polarizes macrophages to pro-inflammatory M1 phenotype in vivo to devour residual biofilm and prevent biofilm reconstruction. Collectively, this 1 O2 -sensitized mild hyperthermia can yield great refractory BAIs treatment via biofilm homeostasis interference, mild-hyperthermia, and immunotherapy, providing a novel and effective anti-biofilm strategy.


Subject(s)
Biofilms , Hyperthermia, Induced , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Phototherapy , Prostheses and Implants , Hyperthermia, Induced/methods
2.
Small ; 18(46): e2204377, 2022 11.
Article in English | MEDLINE | ID: mdl-36216771

ABSTRACT

The pH-responsive theragnostics exhibit great potential for precision diagnosis and treatment of diseases. Herein, acidity-activatable nanoparticles of GB@P based on glucose oxidase (GO) and polyaniline are developed for treatment of biofilm infection. Catalyzed by GO, GB@P triggers the conversion of glucose into gluconic acid and hydrogen peroxide (H2 O2 ), enabling an acidic microenvironment-activated simultaneously enhanced photothermal (PT) effect/amplified photoacoustic imaging (PAI). The synergistic effects of the enhanced PT efficacy of GB@P and H2 O2 accelerate biofilm eradication because the penetration of H2 O2 into biofilm improves the bacterial sensitivity to heat, and the enhanced PT effect destroys the expressions of extracellular DNA and genomic DNA, resulting in biofilm destruction and bacterial death. Importantly, GB@P facilitates the polarization of proinflammatory M1 macrophages that initiates macrophage-related immunity, which enhances the phagocytosis of macrophages and secretion of proinflammatory cytokines, leading to a sustained bactericidal effect and biofilm eradication by the innate immunomodulatory effect. Accordingly, the nanoplatform of GB@P exhibits the synergistic effects on the biofilm eradication and bacterial residuals clearance through a combination of the enhanced PT effect with immunomodulation. This study provides a promising nanoplatform with enhanced PT efficacy and amplified PAI for diagnosis and treatment of biofilm infection.


Subject(s)
Hyperthermia, Induced , Nanoparticles , Photoacoustic Techniques , Glucose Oxidase , Hyperthermia, Induced/methods , Biofilms , Macrophages , Immunomodulation
SELECTION OF CITATIONS
SEARCH DETAIL