Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 118
Filter
Add more filters

Complementary Medicines
Publication year range
1.
Biomater Sci ; 12(7): 1662-1692, 2024 Mar 26.
Article in English | MEDLINE | ID: mdl-38411151

ABSTRACT

Traditional Chinese medicine (TCM) is a combination of raw herbs and herbal extracts with a plethora of documented beneficial bioactivities, which has unique advantages in anti-tumor therapy, and many of its major bioactive molecules have been identified in recent years due to advances in chemical separation and structural analysis. However, the major chemical classes of plant-derived bioactive compounds frequently possess chemical properties, including poor water solubility, stability, and bioavailability, that limit their therapeutic application. Alternatively, natural small molecules (NSMs) containing these components possess modifiable groups, multiple action sites, hydrophobic side chains, and a rigid skeleton with self-assembly properties that can be exploited to construct self-assembled nanoparticles with therapeutic effects superior to their individual constituents. For instance, the construction of a self-assembled nanodrug delivery system can effectively overcome the strong hydrophobicity and poor in vivo stability of NSMs, thereby greatly improving their bioavailability and enhancing their anti-tumor efficacy. This review summarizes the self-assembly methods, mechanisms, and applications of a variety of NSMs, including terpenoids, flavonoids, alkaloids, polyphenols, and saponins, providing a theoretical basis for the subsequent research on NSMs and the development of SANDDS.


Subject(s)
Antineoplastic Agents , Drugs, Chinese Herbal , Medicine, Chinese Traditional/methods , Drugs, Chinese Herbal/chemistry , Polyphenols
2.
Food Chem Toxicol ; 185: 114462, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38272172

ABSTRACT

Zearalenone (ZEN, a widespread fusarium mycotoxin) causes evoked oxidative stress in reproductive system, but little is known about whether this is involved in ferroptosis. Melatonin, a well-known antioxidant, has demonstrated unique anti-antioxidant properties in several studies. Here, this study was aimed to investigate whether ZEN-induced oxidative stress in female pig's reproductive system was involved in ferroptosis, and melatonin was then supplemented to protect against ZEN-induced abnormalities in vitro cell models [human granulosa cell (KGN) and mouse endometrial stromal cell (mEC)] and in vivo mouse model. According to the results from female pig's reproductive organs, ZEN-induced abnormalities in vulvar swelling, inflammatory invasion and pathological mitochondria, were closely linked with evoked oxidative stress. Using RNA-seq analysis, we further revealed that ZEN-induced reproductive toxicity was due to activated ferroptosis. Mechanistically, by using in vitro cell models (KGN and mEC) and in vivo mouse model, we observed that ZEN exposure resulted in oxidative stress and ferroptosis in a glutathione-dependent manner. Notably, these ZEN-induced abnormalities above were alleviated by melatonin supplementation through enhanced productions of glutathione peroxidase 4 and glutathione. Herein, the present results suggest that potential strategies to improve glutathione production protect against ZEN-induced reproductive toxicity, including oxidative stress and ferroptosis.


Subject(s)
Ferroptosis , Melatonin , Zearalenone , Female , Humans , Animals , Mice , Zearalenone/toxicity , Melatonin/pharmacology , Oxidative Stress , Glutathione/metabolism , Genitalia, Female
3.
Front Microbiol ; 14: 1305772, 2023.
Article in English | MEDLINE | ID: mdl-38107864

ABSTRACT

This study delves into the impact of yeast culture (YC) on rumen epithelial development, microbiota, and metabolome, with the aim of investigating YC's mechanism in regulating rumen fermentation. Thirty male lambs of Hu sheep with similar age and body weight were selected and randomly divided into three groups with 10 lambs in each group. Lambs were fed a total mixed ration [TMR; rough: concentrate (R:C) ratio ≈ 30:70] to meet their nutritional needs. The experiment adopted completely randomized design (CRD). The control group (CON) was fed the basal diet with high concentrate, to which 20 g/d of YC was added in the low dose YC group (LYC) and 40 g/d of YC in the high dose YC group (HYC). The pretrial period was 14 days, and the experimental trial period was 60 days. At the end of a 60-day trial, ruminal epithelial tissues were collected for histomorphological analysis, and rumen microorganisms were analyzed by 16S rDNA sequencing and rumen metabolites by untargeted liquid chromatography-mass spectrometry (LC-MS) metabolomics techniques. The results showed that YC improved rumen papilla development and increased rumen papilla length (p < 0.05), while decreased cuticle thickness (p < 0.05). The 16S rDNA sequencing results showed that YC reduced the relative abundance of Prevotella_1 (p < 0.05), while significantly increased the relative abundance of Ruminococcaceae_UCG-005, uncultured_bacterium_f_Lachnospiraceae, and Ruminococcus_1 genus (p < 0.05). Metabolomics analysis showed that YC changed the abundance of metabolites related to amino acid metabolism, lipid metabolism and vitamin metabolism pathways in the rumen. In summary, YC might maintain rumen health under high-concentrate diet conditions by changing rumen microbiota structure and fermentation patterns, thereby affecting rumen metabolic profiles and repairing rumen epithelial injury.

4.
Front Microbiol ; 14: 1273714, 2023.
Article in English | MEDLINE | ID: mdl-38029081

ABSTRACT

Prickly Ash Seeds (PAS), as a traditional Chinese medicinal herb, have pharmacological effects such as anti-asthma, anti-thrombotic, and anti-bacterial, but their impact on gut microbiota is still unclear. This study used a full-length 16 s rRNA gene sequencing technique to determine the effect of adding PAS to the diet on the structure and distribution of gut microbiota in Hu sheep. All lambs were randomly divided into two groups, the CK group was fed with a basal ration, and the LZS group was given a basal diet with 3% of PAS added to the ration. The levels of inflammatory factors (IL-10, IL-1ß, and TNF-α) in intestinal tissues were measured by enzyme-linked immunosorbent assay (ELISA) for Hu sheep in the CK and LZS group. The results indicate that PAS can increase the diversity and richness of gut microbiota, and can affect the community composition of gut microbiota. LEfSe analysis revealed that Verrucomicrobiota, Kiritimatiella, WCHB 41, and uncultured_rumen_bacterium were significantly enriched in the LZS group. KEGG pathway analysis found that LZS was significantly higher than the CK group in the Excretory system, Folding, sorting and degradation, and Immune system pathways (p < 0.05). The results of ELISA assay showed that the level of IL-10 was significantly higher in the LZS group than in the CK group (p < 0.05), and the levels of TNF-α and IL-1ß were significantly higher in the CK group than in the LZS group (p < 0.05). LEfSe analysis revealed that the dominant flora in the large intestine segment changed from Bacteroidota and Gammaproteobacteria to Akkermansiaceae and Verrucomicrobiae after PAS addition to Hu sheep lambs; the dominant flora in the small intestine segment changed from Lactobacillales and Aeriscardovia to Kiritimatiellae and WCHB1 41. In conclusion, the addition of PAS to sheep diets can increase the number and types of beneficial bacteria in the intestinal tract, improve lamb immunity, and reduce intestinal inflammation. It provides new insights into healthy sheep production.

5.
Bioorg Chem ; 141: 106884, 2023 12.
Article in English | MEDLINE | ID: mdl-37774435

ABSTRACT

A new type of uniformly dispersed selenium nanoparticles (SeNPs) was prepared using Antarctic ice microalgae polypeptides (AIMP) as the stabilizer and dispersant. Different characterization techniques and tests show that the SeNPs are effectively combined with AIMP through physical adsorption and hydrogen bonding to form a more stable structure. Orange-red, zero-valence, amorphous, and spherical AIMP-SeNPs with a diameter of 52.07 ± 1.011 nm and a zeta potential of -41.41 ± 0.882 mV were successfully prepared under the optimal conditions. The AIMP-SeNPs had significantly higher DPPH, ABTS and hydroxyl radicals scavenging abilities compared with AIMP and Na2SeO3, and prevented the growth of both Gram-negative and Gram-positive bacteria by disrupting the integrity of cell walls, cell membranes and mitochondrial membranes. The AIMP-SeNPs had higher gastrointestinal stability compared with SeNPs. Thus, this research highlights the crucial role of AIMP as a biopolymer framework in the dispersion, stabilization, and size management of SeNPs and concludes that AIMP-SeNPs can be exploited as a potent antioxidant supplement and antibacterial substance in foods and medicine.


Subject(s)
Microalgae , Nanoparticles , Selenium , Selenium/chemistry , Ice , Antarctic Regions , Antioxidants/chemistry , Nanoparticles/chemistry , Peptides , Digestion
6.
J Ethnopharmacol ; 317: 116719, 2023 Dec 05.
Article in English | MEDLINE | ID: mdl-37268260

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Pi-Pa-Run-Fei-Tang (PPRFT) is an empirical TCM prescription for treating asthma. However, the underlying mechanisms of PPRFT in asthma treatment have yet to be elucidated. Recent advances have revealed that some natural components could ameliorate asthma injury by affecting host metabolism. Untargeted metabolomics can be used to better understand the biological mechanisms underlying asthma development and identify early biomarkers that can help advance treatment. AIM OF THE STUDY: The aim of this study was to verification the efficacy of PPRFT in the treatment of asthma and to preliminarily explore its mechanism. MATERIALS AND METHODS: A mouse asthma model was built by OVA induction. Inflammatory cell in BALF was counted. The level of IL-6, IL-1ß, and TNF-α in BALF were measured. The levels of IgE in the serum and EPO, NO, SOD, GSH-Px, and MDA in the lung tissue were measured. Furthermore, pathological damage to the lung tissues was detected to evaluate the protective effects of PPRFT. The serum metabolomic profiles of PPRFT in asthmatic mice were determined by GC-MS. The regulatory effects on mechanism pathways of PPRFT in asthmatic mice were explored via immunohistochemical staining and western blotting analysis. RESULTS: PPRFT displayed lung-protective effects through decreasing oxidative stress, airway inflammation, and lung tissue damage in OVA-induced mice, which was demonstrated by decreasing inflammatory cell levels, IL-6, IL-1ß, and TNF-α levels in BALF, and IgE levels in serum, decreasing EPO, NO, and MDA levels in lung tissue, elevating SOD and GSH-Px levels in lung tissue and lung histopathological changes. In addition, PPRFT could regulate the imbalance in Th17/Treg cell ratios, suppress RORγt, and increase the expression of IL-10 and Foxp3 in the lung. Moreover, PPRFT treatment led to decreased expression of IL-6, p-JAK2/Jak2, p-STAT3/STAT3, IL-17, NF-κB, p-AKT/AKT, and p-PI3K/PI3K. Serum metabolomics analysis revealed that 35 metabolites were significantly different among different groups. Pathway enrichment analysis indicated that 31 pathways were involved. Moreover, correlation analysis and metabolic pathway analysis identified three key metabolic pathways: galactose metabolism; tricarboxylic acid cycle; and glycine, serine, and threonine metabolism. CONCLUSION: This research indicated that PPRFT treatment not only attenuates the clinical symptoms of asthma but is also involved in regulating serum metabolism. The anti-asthmatic activity of PPRFT may be associated with the regulatory effects of IL-6/JAK2/STAT3/IL-17 and PI3K/AKT/NF-κB mechanistic pathways.


Subject(s)
Asthma , Lung Injury , Mice , Animals , NF-kappa B/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Ovalbumin/toxicity , Interleukin-6/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Lung Injury/chemically induced , Lung Injury/drug therapy , Lung Injury/metabolism , Tumor Necrosis Factor-alpha/metabolism , Interleukin-17/metabolism , T-Lymphocytes, Regulatory , Disease Models, Animal , Cytokines/metabolism , Asthma/chemically induced , Asthma/drug therapy , Asthma/metabolism , Signal Transduction , Lung , Immunoglobulin E , Superoxide Dismutase/metabolism , Mice, Inbred BALB C
7.
BMC Cancer ; 23(1): 536, 2023 Jun 12.
Article in English | MEDLINE | ID: mdl-37308852

ABSTRACT

BACKGROUND: Lymph node size is considered as a criterion for possible lymph node metastasis in imageology. Micro lymph nodes are easily overlooked by surgeons and pathologists. This study investigated the influencing factors and prognosis of micro lymph node metastasis in gastric cancer. METHODS: 191 eligible gastric cancer patients who underwent D2 lymphadenectomy from June 2016 to June 2017 in the Third Surgery Department at the Fourth Hospital of Hebei Medical University were retrospectively analyzed. Specimens were resected en bloc and the postoperative retrieval of micro lymph nodes was carried out by the operating surgeon for each lymph node station. Micro lymph nodes were submitted for pathological examination separately. According to the results of pathological results, patients were divided into the "micro-LNM (micro lymph node metastasis)" group (N = 85) and the "non micro-LNM" group (N = 106). RESULTS: The total number of lymph nodes retrieved was 10,954, of which 2998 (27.37%) were micro lymph nodes. A total of 85 (44.50%) gastric cancer patients had been proven to have micro lymph node metastasis. The mean number of micro lymph nodes retrieved was 15.7. The rate of micro lymph node metastasis was 8.1% (242/2998). Undifferentiated carcinoma (90.6% vs. 56.6%, P = 0.034) and more advanced Pathological N category (P < 0.001) were significantly related to micro lymph node metastasis. The patients with micro lymph node metastasis had a poor prognosis (HR for OS of 2.199, 95% CI = 1.335-3.622, P = 0.002). For the stage III patients, micro lymph node metastasis was associated with shorter 5-year OS (15.6% vs. 43.6%, P = 0.0004). CONCLUSIONS: Micro lymph node metastasis is an independent risk factor for poor prognosis in gastric cancer patients. Micro lymph node metastasis appears to be a supplement to N category in order to obtain more accurate pathological staging.


Subject(s)
Carcinoma , Stomach Neoplasms , Humans , Lymphatic Metastasis , Retrospective Studies , Dietary Supplements
8.
Phytomedicine ; 115: 154776, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37087793

ABSTRACT

BACKGROUND: The multi-drug resistance is an inherent weakness in the chemotherapeutics of non-small cell lung cancer occurring frequently all over the world. Clinically, ginseng and Chinese medicinal prescriptions including ginseng usually used as anti-tumor adjuncts due to its characteristic of qi-invigorating, which could improve the curative effect of chemotherapy drugs and reduce their toxic side effects. Triterpenoid saponins are the crucial active ingredients in Panax ginseng, and Ginsenoside Rb1 is of the highest quantities. However, the research on the tumor drug-resistance reversal effect and mechanism of ginsenoside Rb1 is still not clear. PURPOSE: This study aimed to systematically estimate the reversal activity of Ginsenoside Rb1 on cisplatin-insensitivity of A549/DDP cells and to reveal its prospective molecular mechanism. METHODS: MTT assay were conducted to evaluate the reversal activity on cisplatin-insensitivity of A549/DDP cells of Ginsenoside Rb1in vitro, and the behavior was also studied by establishing a subcutaneous transplanted tumor model of A549/DDP in BALB/c-nu mice. In addition, P-gp ATPase activity assay, cisplatin accumulation assay, Annexin V-FITC apoptosis assay, real-time qPCR analysis and western blotting analysis were used to clarify the potential mechanism. RESULTS: Ginsenoside Rb1 could effectively reverse the cisplatin-resistance of A549/DDP in vitro and vivo. And after the co-treatment of Ginsenoside Rb1 plus cisplatin, the accumulation of cisplatin increased in A549/DDP cells, which was accompanied with the down-regulation of the mRNA and protein expression levels of ABCB1, SHH, PTCH1 and GLI2. Besides, the apoptosis-inducing ability of cisplatin improved by the relative regulation on the protein expression level of Bax and Bcl-2. Far more importantly, the changes of CYP3A4 mRNA and protein levels were not significant. CONCLUSION: Ginsenoside Rb1 could increase the concentration of intracellular cisplatin and improve the insensitivity for cisplatin on A549/DDP cells. Even better, there was perhaps no unpredictable CYP3A4-mediated pharmacokinetic interactions after the combination of Ginsenoside Rb1 plus cisplatin. Ginsenoside Rb1 was a probable reversal agent for the cisplatin-insensitivity of A549/DDP cells, with a bifunction of inhibiting the efflux of two drug pumps (P-gp and PTCH1) by targeting ABCB1 and Hedgehog (Hh) pathway. In general, this research laid the groundwork for the development of a new reversal agent for the cisplatin-insensitivity of NSCLC.


Subject(s)
Antineoplastic Agents , Carcinoma, Non-Small-Cell Lung , Ginsenosides , Lung Neoplasms , Animals , Mice , Cisplatin/pharmacology , Cisplatin/therapeutic use , Carcinoma, Non-Small-Cell Lung/drug therapy , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Ginsenosides/pharmacology , Ginsenosides/therapeutic use , Lung Neoplasms/drug therapy , Cytochrome P-450 CYP3A , Cell Line, Tumor , Hedgehog Proteins , Drug Resistance, Neoplasm , Apoptosis , Cell Proliferation , Patched-1 Receptor
9.
Am J Chin Med ; 51(4): 1041-1066, 2023.
Article in English | MEDLINE | ID: mdl-37120706

ABSTRACT

Metastasis of osteosarcoma is an important adverse factor affecting patients' survival, and cancer stemness is the crucial cause of distant metastasis. Capsaicin, the main component of pepper, has been proven in our previous work to inhibit osteosarcoma proliferation and enhance its drug sensitivity to cisplatin at low concentrations. This study aims to further explore the anti-osteosarcoma effect of capsaicin at low concentrations (100[Formula: see text][Formula: see text]M, 24[Formula: see text]h) on stemness and metastasis. The stemness of human osteosarcoma (HOS) cells was decreased significantly by capsaicin treatment. Additionally, the capsaicin treatment's inhibition of cancer stem cells (CSCs) was dose-dependent on both sphere formation and sphere size. Meanwhile, capsaicin inhibited invasion and migration, which might be associated with 25 metastasis-related genes. SOX2 and EZH2 were the most two relevant stemness factors for capsaicin's dose-dependent inhibition of osteosarcoma. The mRNAsi score of HOS stemness inhibited by capsaicin was strongly correlated with most metastasis-related genes of osteosarcoma. Capsaicin downregulated six metastasis-promoting genes and up-regulated three metastasis-inhibiting genes, which significantly affected the overall survival and/or disease-free survival of patients. In addition, the CSC re-adhesion scratch assay demonstrated that capsaicin inhibited the migration ability of osteosarcoma by inhibiting its stemness. Overall, capsaicin exerts a significant inhibitory effect on the stemness expression and metastatic ability of osteosarcoma. Moreover, it can inhibit the migratory ability of osteosarcoma by suppressing its stemness via downregulating SOX2 and EZH2. Therefore, capsaicin is expected to be a potential drug against osteosarcoma metastasis due to its ability to inhibit cancer stemness.


Subject(s)
Bone Neoplasms , Osteosarcoma , Humans , Capsaicin/pharmacology , Capsaicin/therapeutic use , Capsaicin/metabolism , Cell Proliferation/genetics , Cell Line, Tumor , Osteosarcoma/drug therapy , Osteosarcoma/genetics , Bone Neoplasms/drug therapy , Bone Neoplasms/genetics , Bone Neoplasms/metabolism , Neoplastic Stem Cells/pathology , Enhancer of Zeste Homolog 2 Protein/metabolism , Enhancer of Zeste Homolog 2 Protein/pharmacology , SOXB1 Transcription Factors/genetics , SOXB1 Transcription Factors/metabolism , SOXB1 Transcription Factors/pharmacology
10.
Zhen Ci Yan Jiu ; 48(2): 211-6, 2023 Feb 25.
Article in Chinese | MEDLINE | ID: mdl-36858420

ABSTRACT

Moxibustion therapy is a unique health resource in China, which is advantageous by its irreplaceable effectiveness in treatment, disease prevention and healthcare. But, moxibustion therapy used in primary care institutions in China is far from the due role of this therapy played in medical practice. The authors believe that the heat-sensitive moxibustion (HSM) robot should be developed by integrating the manipulation of moxibustion therapy with modern artifical intelligence technology so that moxibustion therapy can be operated precisely and easily, deqi of moxibustion be effectively stimulated and the cost of its manual manipulation be reduced. Eventually, the technology of moxibustion therapy can be popularized in the primary care institutions to serve the health of the people. This paper introduces the creation of HSM technology, the research and development (R&D) of HSM robot, and its advantages, as well as the application prospects. It is anticipated that the R&D of HSM robot may speed up the development of moxibustion therapy worldwide.


Subject(s)
Moxibustion , Robotics , Humans , Hot Temperature , China
11.
Article in English | MEDLINE | ID: mdl-36906246

ABSTRACT

Liver health is important to maintain survival and growth of fish. Currently, the role of dietary docosahexaenoic acid (DHA) in improving fish liver health is largely unknown. This study investigated the role of DHA supplementation in fat deposition and liver damage caused by D-galactosamine (D-GalN) and lipopolysaccharides (LPS) in Nile tilapia (Oreochromis niloticus). Four diets were formulated as control diet (Con), Con supplemented with 1 % DHA, 2 % DHA and 4 % DHA diets, respectively. The diets were fed to 25 Nile tilapia (2.0 ± 0.1 g, average initial weight) in triplicates for four weeks. After the four weeks, 20 fish in each treatment were randomly selected and injected with a mixture of 500 mg D-GalN and 10 µL LPS per mL to induce acute liver injury. The results showed that the Nile tilapia fed on DHA diets decreased visceral somatic index, liver lipid content and serum and liver triglyceride concentrations than those fed on the Con diet. Moreover, after D-GalN/LPS injection, the fish fed on DHA diets decreased alanine aminotransferase and aspartate transaminase activities in the serum. The results of liver qPCR and transcriptomics assays together showed that the DHA diets feeding improved liver health by downregulating the expression of the genes related to toll-like receptor 4 (TLR4) signaling pathway, inflammation and apoptosis. This study indicates that DHA supplementation in Nile tilapia alleviates the liver damage caused by D-GalN/LPS through increasing lipid catabolism, decreasing lipogenesis, TLR4 signaling pathway, inflammation, and apoptosis. Our study provides novel knowledge on the role of DHA in improving liver health in cultured aquatic animals for sustainable aquaculture.


Subject(s)
Cichlids , Animals , Animal Feed/analysis , Cichlids/metabolism , Diet/veterinary , Dietary Supplements , Docosahexaenoic Acids/pharmacology , Docosahexaenoic Acids/metabolism , Galactosamine/toxicity , Galactosamine/metabolism , Inflammation/metabolism , Lipopolysaccharides/toxicity , Lipopolysaccharides/metabolism , Liver/metabolism , Toll-Like Receptor 4/metabolism
12.
Molecules ; 28(5)2023 Mar 03.
Article in English | MEDLINE | ID: mdl-36903584

ABSTRACT

Organic acids account for around 3% of the dry matter in tea leaves, and their composition and contents vary in different types of tea. They participate in the metabolism of tea plants, regulate nutrient absorption and growth, and contribute to the aroma and taste quality of tea. Compared with other secondary metabolites in tea, the researches on organic acids are still limited. This article reviewed the research progresses of organic acids in tea, including analysis methods, the root secretion and physiological function, the composition of organic acids in tea leaves and related influencing factors, the contribution of organic acids to sensory quality, and the health benefits, such as antioxidation, promotion of digestion and absorption, acceleration of gastrointestinal transit, and regulation of intestinal flora. It is hoped to provide references for related research on organic acids from tea.


Subject(s)
Camellia sinensis , Volatile Organic Compounds , Camellia sinensis/chemistry , Plant Leaves/chemistry , Volatile Organic Compounds/analysis , Odorants , Tea/chemistry
13.
J Clin Med ; 12(2)2023 Jan 07.
Article in English | MEDLINE | ID: mdl-36675434

ABSTRACT

Objective: This study aimed to evaluate the efficacy and safety of Huangqi Guizhi Wuwu decoction (HGWD), which is composed of five crude drugs (Astragali Radix, Cinnamomi Ramulus, Paeoniae Radix Alba, Zingiberis Rhizoma Recens, and Jujubae Fructus), in the treatment of albumin-bound paclitaxel (nab-PTX)-induced peripheral neuropathy (PN) in Chinese patients with breast cancer (BC). Methods: This trial was conducted at the National Cancer Center in China from January 2020 to June 2022. The eligible participants were assigned randomly in a 1:1 ratio to an HGWD group or a control group. The outcome measure was EORTC QLQ-CIPN20 questionnaire. Results: 92 patients diagnosed with BC were enrolled and randomized to either HGWD group (n = 46) or control group (n = 46). There were no significant differences in baseline characteristics between the two groups (p > 0.05). A statistical analysis of the sensory and motor functions of the EORTC QLQ-CIPN20 scores showed that patients in the HGWD group reported a larger decrease in CIPN sensory scores than those in the control group (p < 0.001). The EORTC QLQ-CIPN20 autonomic scores showed no statistical significance between the two groups (p > 0.05). Conclusions: HGWD packs could significantly improve patients' nab-PTX-induced PN, increase the tolerance for nab-PTX-containing chemotherapy, and further improve the quality of life of patients with BC.

14.
Article in English | MEDLINE | ID: mdl-36708962

ABSTRACT

Vitellogenins (Vtgs) are essential for female reproduction in oviparous animals, yet the exact roles and mechanisms remain unknown. In the present study, we knocked out vtg1, which is the most abundant Vtg in zebrafish, Danio rerio via the CRISPR/Cas 9 technology. We aimed to identify the roles of Vtg1 and related mechanisms in reproduction and development. We found that, the Vtg1-deficient female zebrafish reduced gonadosomatic index, egg production, yolk granules and mature follicles in ovary compared to the wide type (WT). Moreover, the Vtg1-deficient zebrafish diminished hatching rates, cumulative survival rate, swimming capacity and food intake, but increased malformation rate, and delayed swim bladder development during embryo and early-larval phases. The Vtg1-deficiency in female broodstock inhibited docosahexaenoic acid-enriched phosphatidylcholine (DHA-PC) transportation from liver to ovary, which lowered DHA-PC content in ovary and offspring during larval stage. However, the Vtg1-deficient zebrafish increased gradually the total DHA-PC content via exogeneous food intake, and the differences in swimming capacity and food intake returned to normal as they matured. Furthermore, supplementing Vtg1-deficient zebrafish with dietary PC and DHA partly ameliorated the impaired female reproductive capacity and larval development during early phases. This study indicates that, DHA and PC carried by Vtg1 are crucial for female fecundity, and affect embryo and larval development through maternal-nutrition effects. This is the first study elucidating the nutrient and physiological functions of Vtg1 and the underlying biochemical mechanisms in fish reproduction and development.


Subject(s)
Ovary , Zebrafish , Animals , Female , Vitellogenins/pharmacology , Docosahexaenoic Acids/pharmacology , Liver , Reproduction/physiology , Lecithins
15.
Phytochem Anal ; 34(7): 755-771, 2023 Oct.
Article in English | MEDLINE | ID: mdl-36529443

ABSTRACT

INTRODUCTION: Doxorubicin-induced cardiotoxicity (DIC) is a serious obstacle to oncologic treatment. Mountain cultivated ginseng (MCG) exhibits stronger pharmacological effects than cultivated ginseng (CG) mainly due to the differences in ginsenosides. However, the material basis and the underlying mechanism of the protective effects of total saponins of MCG (TSMCG) against DIC are unclear. OBJECTIVES: We aimed to elucidate the material basis and the pharmacodynamic effects of TSMCG on DIC as well as the underlying mechanisms. METHODS: To comprehensively analyze the effective substances, the chemical components of TSMCG and their prototypes or metabolites in vivo were characterized through UHPLC/Q-TOF-MS. Then, an absorbed component-target-disease network was established to explore the mechanisms underlying the protective effects of TSMCG against DIC. H9c2 cells were employed for pharmacodynamic assays. The mechanism was verified by Western blot and molecular docking simulations. RESULTS: A total of 56 main ginsenosides were identified in TSMCG, including 27 ginsenosides of PPD type, 15 ginsenosides of PPT type, two ginsenosides of OA types, and 12 ginsenosides of other types. Moreover, 55 ginsenoside prototypes or metabolites in vivo were tentatively characterized. Ginsenoside Ra1 , a differential compound between MCG and CG, could be metabolized by oxidation and deglycosylation. Network pharmacology showed that AKT1, p53, and STAT3 are core targets of 62 intersecting genes. Molecular docking results indicated that most of the ginsenosides have favorable affinity with these core targets. After doxorubicin exposure, TSMCG could increase cell viability and inhibit apoptosis in a dose-dependent manner. CONCLUSION: Our work reveals a novel comprehensive strategy to study the material basis of the protective effects of TSMCG against DIC and the underlying mechanisms through integrating in vivo substance identification, metabolic profiling, network pharmacology, pharmacodynamic evaluation, and mechanism verification.


Subject(s)
Ginsenosides , Panax , Saponins , Saponins/pharmacology , Ginsenosides/pharmacology , Panax/chemistry , Cardiotoxicity , Molecular Docking Simulation , Network Pharmacology , Doxorubicin/pharmacology , Doxorubicin/metabolism
16.
Am J Physiol Regul Integr Comp Physiol ; 324(3): R281-R292, 2023 03 01.
Article in English | MEDLINE | ID: mdl-36572553

ABSTRACT

The regulation of cholesterol metabolism in fish is still unclear. Statins play important roles in promoting cholesterol metabolism development in mammals. However, studies on the role of statins in cholesterol metabolism in fish are currently limited. The present study evaluated the effects of statins on cholesterol metabolism in fish. Nile tilapia (Oreochromis niloticus) were fed on control diets supplemented with three atorvastatin levels (0, 12, and 24 mg/kg diet, ATV0, ATV12, and ATV24, respectively) for 4 wk. Intriguingly, the results showed that both atorvastatin treatments increased hepatic cholesterol and triglyceride contents mainly through inhibiting bile acid synthesis and efflux, and compensatorily enhancing cholesterol synthesis in fish liver (P < 0.05). Moreover, atorvastatin treatment significantly inhibited hepatic very-low-density lipoprotein (VLDL) assembly and thus decreased serum VLDL content (P < 0.05). However, fish treated with atorvastatin significantly reduced cholesterol and triglycerides contents in adipose tissue (P < 0.05). Further molecular analysis showed that atorvastatin treatment promoted cholesterol synthesis and lipogenesis pathways, but inhibited lipid catabolism and low-density lipoprotein (LDL) uptake in the adipose tissue of fish (P < 0.05). In general, atorvastatin induced the remodeling of lipid distribution between liver and adipose tissues through blocking VLDL efflux from the liver to adipose tissue of fish. Our results provide a novel regulatory pattern of cholesterol metabolism response caused by atorvastatin in fish, which is distinct from mammals: cholesterol inhibition by atorvastatin activates hepatic cholesterol synthesis and inhibits its efflux to maintain cholesterol homeostasis, consequently reduces cholesterol storage in fish adipose tissue.


Subject(s)
Hydroxymethylglutaryl-CoA Reductase Inhibitors , Animals , Atorvastatin/pharmacology , Atorvastatin/metabolism , Hydroxymethylglutaryl-CoA Reductase Inhibitors/pharmacology , Hydroxymethylglutaryl-CoA Reductase Inhibitors/metabolism , Lipoproteins/metabolism , Lipoproteins/pharmacology , Cholesterol , Liver/metabolism , Triglycerides , Lipoproteins, VLDL , Adipose Tissue/metabolism , Lipid Metabolism , Mammals/metabolism
17.
Eur J Prev Cardiol ; 30(2): 191-202, 2023 01 24.
Article in English | MEDLINE | ID: mdl-36378543

ABSTRACT

AIMS: Inspiratory muscle training (IMT) can increase the strength or endurance of the diaphragm and accessory muscles of inspiration, yet there is no evidence that endorses the role of IMT in patients of transcatheter aortic valve replacement (TAVR). This study for the first time tested the effects of IMT plus usual cardiac rehabilitation (CR) function in patients after TAVR. METHODS AND RESULTS: A double-blinded, randomized controlled, single-centre clinical trial was undertaken. Participants who had a confirmed diagnosis of valve heart disease and were clinically stable after TAVR were recruited and received a CR programme during the hospital stay. A total of 96 patients were recruited and randomly assigned to the IMT + CR group (n = 48) or the CR group (n = 48) in a 1:1 ratio. The group difference in the primary outcome, the 6-min walk distance at the discharge of the hospital, significantly favoured the IMT + CR group (mean difference -33.52, 95% CI: -64.42 to -2.62, P = 0.034). The significant difference was maintained at the 1-month and 3-month follow-ups (mean difference: 41.51, 95% CI: 1.82-81.21, P = 0.041). In addition, the mean hospital stays of subjects in the IMT + CR group was 11 days, which was significantly shorter than the 12.5 days in the CR group (P = 0.016). Sensitivity analysis using per-protocol analysis supported these findings. No adverse treatment-related events were reported. CONCLUSION: Compared with usual CR, IMT plus CR can effectively improve exercise endurance, pulmonary ventilation function, and inspiratory muscle strength in patients after TAVR and shorten the length of hospital stay.


Subject(s)
Transcatheter Aortic Valve Replacement , Humans , Transcatheter Aortic Valve Replacement/adverse effects , Breathing Exercises/methods , Respiratory Muscles , Respiration , Lung , Treatment Outcome , Aortic Valve/diagnostic imaging , Aortic Valve/surgery
18.
Medicine (Baltimore) ; 101(50): e31803, 2022 Dec 16.
Article in English | MEDLINE | ID: mdl-36550799

ABSTRACT

BACKGROUND: There is no evidence-based data to confirm the efficacy of Yiqi Yangyin Jiedu Decoction (YYJD) in postoperative thyroid cancer patients. Therefore, in order to provide new evidence-based medical evidence for clinical treatment, we used this protocol to conduct a systematic review and meta-analysis to evaluate the efficacy and safety of YYJD in postoperative patients with thyroid cancer. METHODS: This systematic review and meta-analysis has been prospectively registered in the PROSPERO (No. CRD42022365826). Six databases, including Medicine, Embase, Cochrane, CNKI, Wan Fang, and VIP, will be searched from their inception to February 1, 2023. Clinical controlled studies investigating the efficacy and safety of YYJD in patients after thyroid cancer surgery will all be considered for inclusion. The primary outcomes are tumor recurrence rate and overall survival. The secondary outcomes include treatment-related adverse effects, length of hospital stay, and patient satisfaction. All data will be analyzed using R version 3.4.3 to calculate pooled standardized mean differences for outcomes. Data that can not be retrieved will be interpreted from graphs using digital ruler software. RESULTS: The results of this paper will fill a gap in the literature regarding this project. CONCLUSION: We assume that the YYJD has a positive effect.


Subject(s)
Drugs, Chinese Herbal , Thyroid Neoplasms , Humans , Systematic Reviews as Topic , Meta-Analysis as Topic , Drugs, Chinese Herbal/therapeutic use , Thyroid Neoplasms/drug therapy , Thyroid Neoplasms/surgery , Research Design
19.
Fish Shellfish Immunol ; 127: 836-842, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35843526

ABSTRACT

Carbohydrates are widely distributed in nature as an important nutritional substance and energy source. However, the utilization efficiency of carbohydrates is very poor in fish. Over consumption of carbohydrates will cause excessive inflammatory response and result in lower pathogen resistance in fish. Probiotics have been widely used to prevent inflammation, but the underlying mechanism still needs more exploration. In this study, three diets, including a control diet (CD), a high-carbohydrate diet (HD) and the HD supplemented with Bacillus amyloliquefaciens SS1 (HDB) were used to feed Nile tilapia for 10 weeks. At the end of the feeding trial, fish were challenged with Aeromonas hydrophila (A. hydrophila) for 7 days. The data showed that the addition of Bacillus amyloliquefaciens SS1 (B. amyloliquefaciens SS1) significantly increased the survival rate and enhanced the respiratory burst activity of head kidney leukocytes in Nile tilapia. B. amyloliquefaciens SS1 treatment significantly elevated the anti-oxidative capability, which was evidenced by higher activities of superoxide dismutase (SOD) and total antioxidant capacity (T-AOC), and higher content of reduced glutathione (GSH) in the serum. Administration with B. amyloliquefaciens SS1 effectively suppressed inflammatory response in the liver by inhibiting nuclear factor kappa-B (NF-κB)/interleukin-1 beta (IL-1ß) inflammatory signaling pathway. In vitro analysis suggested that intestinal bacteria derived-acetate has the antioxidant capability, which may account for the alleviation of inflammation. Overall, this study demonstrated that dietary supplementation with B. amyloliquefaciens SS1 protected Nile Tilapia against A. hydrophila infection and suppressed liver inflammation by enhancing antioxidant capability.


Subject(s)
Bacillus amyloliquefaciens , Cichlids , Fish Diseases , Gram-Negative Bacterial Infections , Aeromonas hydrophila/physiology , Animal Feed/analysis , Animals , Antioxidants/metabolism , Carbohydrates , Cichlids/metabolism , Diet/veterinary , Dietary Supplements/analysis , Fish Diseases/microbiology , Fish Diseases/prevention & control , Gram-Negative Bacterial Infections/prevention & control , Gram-Negative Bacterial Infections/veterinary , Inflammation/prevention & control , Inflammation/veterinary , Liver/metabolism
20.
Food Chem ; 390: 133138, 2022 Oct 01.
Article in English | MEDLINE | ID: mdl-35537240

ABSTRACT

The present study was conducted to elucidate the effects of sodium butyrate (SB) and vitamin D3 (VD3) supplementation on meat quality, oxidative stability, and nutritional value of the broiler chicken. The results indicated that dietary SB decreased lightness (L*), cooking and drip loss, free fatty acids (FFA), C14:0, C16:0, saturated fatty acids (SFA), C20:4n6, and n-6: n3 polyunsaturated fatty acids (PUFA) and increased DPPH and ABTS in chicken meat. The PUFAs content in the chicken meat increased only when SB was added along with higher VD3 levels. However, the amino acid content was reduced with an increase in the VD3 levels. In conclusion, dietary SB supplementation improved chicken meat quality by enhancing the antioxidant capacity and physical properties. Moreover, adding SB or combined with higher VD3 levels optimized the fatty acid composition. However, higher VD3 levels reduced the amino acid content of the chicken meat.


Subject(s)
Chickens , Sodium, Dietary , Amino Acids/metabolism , Animal Feed/analysis , Animals , Butyric Acid , Chickens/metabolism , Cholecalciferol , Diet , Dietary Supplements , Fatty Acids/chemistry , Meat/analysis , Oxidative Stress
SELECTION OF CITATIONS
SEARCH DETAIL