Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 81
Filter
1.
Chem Biodivers ; 21(2): e202301949, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38326086

ABSTRACT

Five new iridoids, valeralides A-E (1-5), two new acyclic monoterpenoids, valeralides F (6) and G (7), together with two known iridoids (8 and 9), were isolated from the roots and rhizomes of Valeriana officinalis var. latifolia. Their structures were elucidated based on 1D and 2D NMR, as well as HR-ESI-MS spectroscopic data. The absolute configuration of compounds 1-4 were elucidated based on electronic circular dichroism (ECD) calculation. In addition, all the isolates were evaluated for their inhibition on nitric oxide production, cytotoxicity and anti-influenza A virus activity.


Subject(s)
Rhizome , Valerian , Molecular Structure , Valerian/chemistry , Iridoids/chemistry , Monoterpenes/analysis , Plant Roots/chemistry
2.
Phytochemistry ; 218: 113934, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38029951

ABSTRACT

Fifty-nine compounds, including nineteen previously undescribed iridoids (valeriananols A-S) and an undescribed alkaloid (5'-isovaleryl uridine), were isolated from the leaves and stems of Valeriana officinalis var. latifolia. Their structures were elucidated based on Mass spectrometry and NMR spectroscopy. The absolute configuration of valeriananols A-C, E-N, P, Q and S was determined by experimental and calculated electronic circular dichroism. Structurally, valeriananols A and B were two 1,3-seco-iridoids with a 3,6-epoxy moiety, valeriananols K and L were a pair of C-4 epimers, while valeriananol S was a 4'-deoxy iridoid glycoside. In addition, valeriananol P, stenopterin A and patriscabioin C exhibited significant inhibition on nitric oxide production with IC50 values of 10.31, 3.93 and 8.69 µM, respectively. Furthermore, stenopterin A and patriscabioin C showed anti-proliferation activity on the MCF-7 cell line with IC50 values of 17.28 and 13.89 µM, respectively.


Subject(s)
Valerian , Molecular Structure , Valerian/chemistry , Iridoids/pharmacology , Iridoids/chemistry , Plant Roots/chemistry , Magnetic Resonance Spectroscopy
3.
Fitoterapia ; 170: 105670, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37690598

ABSTRACT

Verbena officinalis is used as a Chinese folk medicine for the treatment of rheumatism and bronchitis. Herein, four undescribed triterpenes, officinalisoids A-D (1-4), together with thirty-three known compounds (5-37) were isolated from the aerial parts of V. officinalis. The chemical structures of the new compounds were determined by spectrometric data interpretation using NMR, HRESIMS, IR and UV spectroscopy. Biological evaluation results revealed that compound 30 exhibited potential anti-inflammatory activity with IC50 value of 6.07 µM (CC50 > 50 µM) and compound 12 showed moderate anti-dengue virus activity with the IC50 value of 24.55 µM (CC50 > 50 µM).

4.
Molecules ; 28(5)2023 Feb 22.
Article in English | MEDLINE | ID: mdl-36903293

ABSTRACT

The phytochemical investigation of the roots of the traditional Chinese medicinal plant Sophora flavescens led to the isolation of two novel prenylflavonoids with an unusual cyclohexyl substituent instead of the common aromatic ring B, named 4',4'-dimethoxy-sophvein (17) and sophvein-4'-one (18), and 34 known compounds (1-16, 19-36). The structures of these chemical compounds were determined by spectroscopic techniques, including 1D-, 2D-NMR, and HRESIMS data. Furthermore, evaluations of nitric oxide (NO) production inhibitory activity against lipopolysaccharide (LPS)-treated RAW264.7 cells indicated that some compounds exhibited obvious inhibition effects, with IC50 ranged from 4.6 ± 1.1 to 14.4 ± 0.4 µM. Moreover, additional research demonstrated that some compounds inhibited the growth of HepG2 cells, with an IC50 ranging from 0.46 ± 0.1 to 48.6 ± 0.8 µM. These results suggest that flavonoid derivatives from the roots of S. flavescens can be used as a latent source of antiproliferative or anti-inflammatory agents.


Subject(s)
Flavonoids , Sophora , Flavonoids/chemistry , Sophora flavescens , Sophora/chemistry , Anti-Inflammatory Agents/pharmacology , Plant Roots/chemistry , Plant Extracts/pharmacology , Magnetic Resonance Spectroscopy
5.
Nat Prod Res ; 37(2): 248-255, 2023 Jan.
Article in English | MEDLINE | ID: mdl-34343061

ABSTRACT

A new acylated iridoid, valejatadoid H (1), along with fourteen known compounds, were obtained from the n-BuOH extract of the roots and rhizomes of Valeriana jatamansi, and their structures were elucidated by various spectroscopic methods. Among them, compounds 8, 11 and 13 exhibited potent inhibition on NO production, with IC50 values of 4.21, 6.08 and 20.36 µM, respectively. In addition, compounds 14 and 15 showed anti-influenza virus activities, among which compound 14 exhibited significant effect with an IC50 value of 0.99 µM.


Subject(s)
Valerian , Valerian/chemistry , Iridoids/chemistry , Plant Roots/chemistry , Rhizome
6.
Phytochemistry ; 205: 113478, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36273591

ABSTRACT

Twenty-six iridoids, including six undescribed ones (iridoidvols A-F) and an undescribed natural one, along with ten known sesquiterpenoids were isolated from the roots and rhizomes of Valeriana officinalis. Structurally, iridoidvol A is the first example of iridoid with sesquiterpenoid acid ester. In addition, all of the isolates were evaluated for anti-inflammatory and anti-influenza virus activities. Among them, isovaltrate isovaleroyloxyhydrin exhibited a significant inhibitory effect on NO production with an IC50 value of 19.00 µM.


Subject(s)
Valerian , Iridoids/pharmacology
7.
Fitoterapia ; 165: 105401, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36577455

ABSTRACT

Nine previously undescribed compounds including six tocopherol derivatives (1-6) and three acylphloroglucinol derivatives (7-9) were isolated and characterized from the plants of Dryopteris crassirhizoma. Their structures with absolute configurations were determined by extensive spectroscopic analyses, including IR, HRESIMS, NMR, and calculated electronic circular dichroism (ECD). Compounds 1 and 2 are the first tocopheroid derivatives possessing unique 2,5-dimethylcyclopent-4-ene-1,3-dione carbon skeleton, and compounds 3-6 were new 5a-norcyclopentenones having a spirofused bicyclic carbon skeleton. The biosynthetic pathway of compounds 1-6 was postulated. When combined with fluconazole (FLC), compound 3 showed significant antifungal activity against standard Candida albicans with MIC50 value of 1.19 µg/mL (FLC: 3.41 µg/mL). Furthermore, the anti-plant pathogenic fungi and bacterial activities have been evaluated in vitro, compounds 5 and 8 showed anti-Verticillium dahlia and Sclerotinia sclerotiorum with MIC value of 50 µg/mL, respectively. Compounds 1 and 5 exhibited moderate antibacterial activities against Micrococcus luteus with MIC value of 50 µg/mL, respectively.


Subject(s)
Dryopteris , Dryopteris/chemistry , Tocopherols , Molecular Structure , Antifungal Agents/pharmacology , Antifungal Agents/chemistry , Magnetic Resonance Spectroscopy , Microbial Sensitivity Tests , Anti-Bacterial Agents
8.
Planta Med ; 89(3): 295-307, 2023 Mar.
Article in English | MEDLINE | ID: mdl-35921848

ABSTRACT

Ten novel meroterpenoids, dryoptins/11″-epi-dryoptins A~E (1: ~10: ) with an unprecedented skeleton consisting of dimeric or trimeric acylphloroglucinols and dehydrotheonelline, two undescribed acylphloroglucinol-nerolidol meroterpenoids (11: ~12: ), and ten known acylphloroglucinol derivatives (13: ~22: ), were isolated from D. crassirhizoma. The novel structures including absolute configurations were established by comprehensive spectroscopic analyses and quantum chemical electronic circular dichroism (ECD) calculations. A biosynthetic pathway of 1: ~10: was assumed. The trimeric acylphloroglucinol meroterpenoids 7: /8: showed significant antifungal activity against standard Candida albicans with a MIC50 value of 1.61 µg/mL [fluconazole (FLC): 3.41 µg/mL], and when combined with FLC, the principal components 20: and 21: exhibited strong antifungal activities against FLC-resistant C. albicans with MIC50 values of 8.39 and 7.16 µg/mL (FLC: > 100 µg/mL), respectively. Moreover, compounds 2, 5: /6, 18, 19: , and 21: exhibited inhibitory effects against several pathogenic fungi and bacteria, with MIC50 values of 6.25 ~ 50 µg/mL.


Subject(s)
Antifungal Agents , Dryopteris , Antifungal Agents/pharmacology , Dryopteris/chemistry , Fluconazole/pharmacology , Candida albicans , Circular Dichroism
9.
Bioorg Chem ; 129: 106118, 2022 12.
Article in English | MEDLINE | ID: mdl-36067538

ABSTRACT

Triptolide (TP) is a major active compound derived from the traditional Chinese medicine Tripterygium wilfordii. TP has been reported to inhibit the infection of HIV and a few other viruses. However, the antiviral spectrum and the underlying mechanisms of TP are incompletely defined. TP derivatives were designed, synthesized, and evaluated for anti-influenza activity against the influenza A virus in this study. All of them exhibited activities against oseltamivir sensitive influenza A/WSN/33 virus (H1N1) and oseltamivir resistant influenza A/PR/8/33 virus (H1N1) with low cytotoxicity in vitro. In our present study, TP derivatives probably suppressed influenza virus replication through inhibiting ribonucleoprotein complex nucleus export of influenza A virus by binding with viral nucleoprotein. Moreover, TP derivatives downregulated influenza A virus-induced macrophage cytokine storm in a dose-dependent manner, through inhibiting nuclear factor kappa-light-chain-enhancer of activated B cell (NF-κB) and NOD-like receptor protein 3 (NLRP3) inflammasome signaling. Taken together, TP derivatives suppressed influenza A virus replication by directly targeting NP and regulating innate immune responses induced by influenza A virus infection, which suggested that TP derivatives might be prospective candidates for potent antivirals.


Subject(s)
Influenza A Virus, H1N1 Subtype , Influenza A virus , Influenza, Human , Humans , Nucleoproteins/chemistry , Nucleoproteins/metabolism , Oseltamivir/metabolism , Influenza, Human/drug therapy , Antiviral Agents/chemistry
10.
Fitoterapia ; 162: 105286, 2022 Oct.
Article in English | MEDLINE | ID: mdl-36029942

ABSTRACT

Eight new iridoids, jatavaleridoids A-H (1-8), were isolated from the roots and rhizomes of Valeriana jatamansi. Their structures and absolute configurations were elucidated based on NMR and HRESIMS spectroscopic data, as well as quantum chemical calculation. Structurally, compounds 1-5 and 8 were rare iridoids with long-chain fatty acid esters at C-10. In addition, compound 7 showed cytotoxicity, while compounds 1 and 2 exhibited inhibition on NO production.


Subject(s)
Nardostachys , Valerian , Fatty Acids/analysis , Iridoids/chemistry , Iridoids/pharmacology , Molecular Structure , Plant Roots/chemistry , Rhizome , Valerian/chemistry
11.
Chem Biodivers ; 19(9): e202200609, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35997664

ABSTRACT

Eleven new seco-iridoids, valeridoids G-Q (1-6 and 8-12), along with four known products, 9-epi-valtral C (7), desacylbaldrinal (13), 11-methoxyviburtinal (14) and baldrinal (15), were obtained from Valeriana jatamansi. Among them, the new compounds were identified by their NMR, HR-ESI-MS spectroscopic data and ECD calculation. Moreover, valeridoid N and O were a pair of C3 epimers, whose ether bonds between C-1 and C-3 opened, and new ether bonds formed between C-3 and C-6. Valeridoid Q belonged to the C-1 degradation of seco-iridoids. As a result, 9-epi-valtral C displayed significant inhibition on Streptococcus agalactiae, Staphylococcus aureus, Staphylococcus argenteus, Shigella flexneri and Klebsiella pneumoniae, and valeridoid Q exhibited the most significant inhibition against Salmonella enteritidis. 9-Epi-valtral C and baldrinal selectively inhibited the growth of human glioma stem cells. Valeridoid Q exhibited significant anti-influenza activity, while valeridoid O inhibited nitric oxide production.


Subject(s)
Valerian , Ethers , Humans , Iridoids/chemistry , Molecular Structure , Nitric Oxide , Plant Roots/chemistry , Valerian/chemistry
12.
Bioorg Chem ; 121: 105692, 2022 04.
Article in English | MEDLINE | ID: mdl-35248903

ABSTRACT

Twenty-one new iridoids, jatamansidoids A-U (1-12, 21-26, 32, 35 and 36), two new natural ones, jatamansidoids V (37) and W (38), eighteen known ones (13-20, 27-31, 33 and 34), together with three patchoulol-type sesquiterpenoids (39-41), were isolated from the roots and rhizomes of Valeriana jatamansi. Structurally, compounds 1-7 were the first examples of iridoids from V. jatamansi with unique α, ß, γ, δ-unsaturated aldehyde fragment between C-11, C-4, C-5, C-9 and C-8; compound 8 was an unprecedented iridoid derivative with a methyl group (Me-10) at C-1, rather than C-8, and its plausible biogenetic pathway was proposed in this paper; compounds 22 and 23 were the first examples of Δ4(5)-iridoids simultaneously replaced by oxygen-containing groups at C-3, C-6 and C-7; compound 24 was the first iridoid with both 6,7- and 1,10-epoxy fragments. The structures and absolute configurations of new compounds were elucidated based on extensive spectroscopic techniques and quantum chemical calculation. Furthermore, compounds 13-15 and 39-41 exhibited potent anti-influenza virus activities with H1N1 and H3N2 strains, with IC50 values of 0.21-1.48 µM.


Subject(s)
Influenza A Virus, H1N1 Subtype , Nardostachys , Sesquiterpenes , Valerian , Influenza A Virus, H3N2 Subtype , Iridoids/chemistry , Iridoids/pharmacology , Molecular Structure , Plant Roots/chemistry , Sesquiterpenes/chemistry , Sesquiterpenes/pharmacology , Valerian/chemistry
13.
Nat Prod Res ; 36(13): 3280-3285, 2022 Jul.
Article in English | MEDLINE | ID: mdl-33261518

ABSTRACT

A new norsesquiterpene, wilfordonol E (1), and a new lignan, dipsalignan E (3), together with a known norsesquiterpene and eleven known lignans were isolated from the roots and rhizomes of Valeriana jatamansi. The structures of new compounds were determined by their NMR and HR-ESI-MS spectra. Additionally, some compounds were evaluated for their anti-influenza A virus effects.


Subject(s)
Lignans , Valerian , Iridoids/chemistry , Lignans/analysis , Lignans/pharmacology , Molecular Structure , Plant Roots/chemistry , Valerian/chemistry
14.
Phytomedicine ; 93: 153808, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34753027

ABSTRACT

BACKGROUND: Qingwenjiere Mixture (QJM) is a traditional Chinese medicine (TCM) that has been shown to have remarkable clinical efficacy against COVID-19. However, little is known about the antiviral and anti-inflammatory activities of QJM against a wider range of human coronavirus (HCoV) strains. PURPOSE: The study aims to investigate the antiviral and anti-inflammatory activities of QJM, as well as the underlying mechanisms against HCoV infections. METHODS: The chemical compositions from QJM were analyzed by LC-MS. The inhibitory effect of QJM on infections of HCoV-OC43, HCoV-229E, HCoV-NL63, and SARS-CoV-2 was evaluated in HRT-18 cells, Huh7 cells, LLC-MK2 cells, and Vero-E6 cells, respectively, by using cytopathic effect (CPE) inhibition assay or RT-qPCR detection of viral n, s, or RdRp/Hel genes. The expression of pro-inflammatory cytokines induced by HCoV-OC43, HCoV-229E, and SARS-CoV-2, as well as the host ace2 gene was also determined by RT-qPCR assay. Furthermore, the expression of key molecules in the NF-κB/MAPKs signaling pathways was determined by western blot. RESULTS: In alcohol-extraction groups of QJM and reference decoction pieces, 53 similar ion peaks were identified, the majority of which were phenylpropanoids, iridoids, and flavonoids. In addition, QJM reduced CPE caused by HCoVs and the expression of viral n genes or N protein. Pretreatment with QJM also exerted inhibitory effect on viral n gene expression. QJM also inhibited the expression of RdRp/Hel and s genes of SARS-CoV-2, as well as the host ace2 gene. Besides, QJM markedly reduced virus-induced mRNA expression of a panel of pro-inflammatory cytokines, such as IL-6, CXCL-8/IL-8, CXCL-10/IP-10, CCL-5/RANTES, TNF-α, IFN-α, CCL-2/MCP-1, CXCL-9/MIG, and IL1-α. We further showed that QJM inhibited the phosphorylation of NF-κB p65, and JNK, ERK 1/2, and p38 MAPKs in HCoV-OC43-infected HRT-18 cells. CONCLUSIONS: QJM has broad antiviral and anti-inflammatory activity against both common and newly emerged HCoVs possibly by inhibiting the activation of key components in NF-κB/MAPKs signaling pathway. QJM also has a prevention effect against HCoV infections and inhibits the host receptor required for virus entry. These results indicate that QJM may have the therapeutic potential in the treatment of diseases caused by a broad range of HCoVs.


Subject(s)
COVID-19 , Coronavirus OC43, Human , Anti-Inflammatory Agents/pharmacology , Antiviral Agents/pharmacology , Humans , SARS-CoV-2
15.
Phytomedicine ; 93: 153779, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34638030

ABSTRACT

BACKGROUND: Gansui-Banxia Decoction (GSBXD) is a classic formula of traditional Chinese medical (TCM) sage Zhang Zhongjing to treat stagnation of evil heat and obstruction of qi. At present GSBXD is wildly used to treat cancerous ascites, pleural effusion, peritoneal effusion, pericardial effusion, cranial cavity effusion and several types of cancers, such as hepatocellular carcinoma (HCC) and esophageal cancer. Myeloid-derived suppressor cells (MDSCs) are a kind of immature and heterogeneous cells which can suppress lymphocytes activation by forming a suppressive environment. MDSCs accumulation in peripheral blood and tumors are closely related to the cancer stage and low survival rate of clinical patients. The antitumor immune effect of GSBXD has not received widespread attention. PURPOSE: To investigate the effects of GSBXD on MDSCs accumulation and the mediators including AKT/STAT3/ERK signaling pathways. METHODS: The chemical components of GSBXD were analyzed by UHPLC-MS, and the putative pathways of GSBXD based on Network pharmacology were predicted. Mice were vaccinated with Hepatoma 22 (H22) to establish tumor growth model, which were then administrated with GSBXD ethanol extraction (0.49 mg/kg/day, 1.75 mg/kg/day), sorafenib (60 mg/kg) or saline for 14 days. The cell morphology was evaluated by hematoxylin and eosin (H&E) staining, and immunity cells were determined through flowcytometry analysis. The levels of cytokines production in blood were evaluated by using ELISA kits. STAT3, ERK and AKT/mTOR signaling transduction associated proteins were determined by Western blot. RESULTS: GSBXD could inhibit tumor growth and splenomegaly in H22 tumor model mice. Importantly, GSBXD reduced MDSCs accumulation and differentiation, and inhibited proliferation of F4/80+ CD11b+ macrophages and apoptosis of T cells and B cells, and increased the percentage of CD 3- NK1.1+ NK cells. To better understand the active component of GSBXD, the ethanol-extraction powdered GSBXD was prepared and analyzed by UHPLC-MS. Combined with these main chemical compounds, we predicted that the anti-tumor effect of GSBXD mainly mediated PI3K-AKT and RAS-MAPK signal pathways based on Network Pharmacology. Western blot analysis of tumor tissues and MDSCs cells demonstrated that phosphorylation of AKT, ERK and STAT3 were significantly reduced, specially the activation of ERK. The levels of IL-1ß and IFN-γ were significantly decreased by ELISA analysis. CONCLUSION: GSBXD exhibited antitumor immune activity by reducing the accumulation of MDSCs in vivo, which is possible via down-regulation of AKT/STAT3/ERK signaling pathway and suppression of IL-1ß and IFN-γ.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Myeloid-Derived Suppressor Cells , Animals , Carcinoma, Hepatocellular/drug therapy , Cell Line, Tumor , Humans , Mice , Mice, Inbred C57BL , Myeloid-Derived Suppressor Cells/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins c-akt/metabolism , STAT3 Transcription Factor , Signal Transduction
16.
Chem Biodivers ; 18(4): e2001066, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33656782

ABSTRACT

Three new matrine-type alkaloids, 8ß-hydroxyoxysophoridine (1), 9ß-hydroxysophoridine (2), 9ß-hydroxyisosophocarpine (3), together with one known analog, 11,12-dehydromatrine (4), were isolated from the seeds of Sophora alopecuroides L. The structures of new compounds were elucidated using extensive spectroscopic techniques including the experimental and calculated ECD data. The anti-inflammatory activities of all the isolates on NO production in RAW 264.7 cells stimulated by lipopolysaccharide were evaluated. Among them, 8ß-hydroxyoxysophoridine (1) showed a significant inhibitory effect with an IC50 value of 18.26 µM.


Subject(s)
Alkaloids/pharmacology , Anti-Inflammatory Agents/pharmacology , Nitric Oxide/antagonists & inhibitors , Plant Extracts/pharmacology , Seeds/chemistry , Sophora/chemistry , Alkaloids/chemistry , Alkaloids/isolation & purification , Animals , Anti-Inflammatory Agents/chemistry , Anti-Inflammatory Agents/isolation & purification , Dose-Response Relationship, Drug , Lipopolysaccharides/antagonists & inhibitors , Lipopolysaccharides/pharmacology , Mice , Nitric Oxide/biosynthesis , Plant Extracts/chemistry , Plant Extracts/isolation & purification , RAW 264.7 Cells
17.
Phytochemistry ; 184: 112681, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33548771

ABSTRACT

Seven undescribed (valejatadoids A-G) and 26 known iridoids were obtained from the roots and rhizomes of Valeriana jatamansi. Their structures were determined based on extensive spectroscopic data, especially 1D and 2D NMR, along with HRESIMS. Valejatadoid B is a monoene-type iridoid with a unique double bond between C-4 and C-5. Valejatadoids D-G, jatamanin U, jatamanin O, jatamanvaltrate E, valeriotetrate C, IVHD-valtrate, 10-isovaleroxy-valtrathydrin, jatamanvaltrate Q, valeriandoid F, jatamanvaltrate K, jatamanvaltrate W and isovaltrate were more potent than the positive control when evaluated for inhibition of NO production. Among them, valeriandoid F and jatamanvaltrate K exhibited the most significant inhibitory effects with IC50 values of 0.88 and 0.62 µM, respectively. In addition, valeriandoid F selectively inhibited the proliferation of human glioma stem cell lines, GSC-3# and GSC-18#, with IC50 values of 7.16 and 5.75 µM, respectively.


Subject(s)
Nardostachys , Valerian , Anti-Inflammatory Agents , Iridoids/pharmacology , Molecular Structure , Plant Roots
18.
Med Res Rev ; 40(6): 2290-2338, 2020 11.
Article in English | MEDLINE | ID: mdl-32677056

ABSTRACT

The influenza pandemic continues to threaten public health due to its high morbidity and mortality rates, despite some successes in antiviral research. Natural drugs are important alternative therapies in the treatment of and recovery from influenza and have been the subjects of intense investigation during the last few decades. Many reports have shown that the development of novel bioactive chemicals extracted from natural drugs has significant advantages. Oseltamivir is a successful case of an anti-influenza drug synthesized using two natural products, quinic acid, and shikimic acid, as starting materials. In China, traditional Chinese medicine (TCM) plays an important role in the treatment of influenza. TCM herbal extracts and prescriptions or their isolated bioactive constituents have shown significant therapeutic and preventive effects against influenza. For example, the roots of Isatis indigotica (Banlangen) fight viral infection by targeting both the virus and the host and have significantly different effects than those of synthetic chemicals. Lianhuaqingwen capsule exerts its anti-influenza activity by regulating the immune response to interfere with both viral and host reactions and might well be an alternative therapeutic option to treat influenza virus infection. This paper reviews the chemical ingredients, crude extracts, and TCM prescriptions with anti-influenza activity reported during the period of 2010-September 2019. We hope that this comprehensive review will not only fuel research on anti-influenza active natural products and TCM research but also provide a promising alternative candidate for further anti-influenza drug development.


Subject(s)
Biological Products , Antiviral Agents/pharmacology , China , Humans , Medicine, Chinese Traditional
19.
Phytochemistry ; 175: 112372, 2020 Jul.
Article in English | MEDLINE | ID: mdl-32305683

ABSTRACT

An undescribed iridoid (valeridoid A) and five undescribed bis-iridoids (valeridoids B-F), along with four known ones, were isolated from the roots and rhizomes of Valeriana jatamansi. Their structures were elucidated based on 1D and 2D NMR, as well as HRESIMS spectroscopic data. In addition, 8,9-didehydro-7-hydroxydolichodial and valeridoid F were found to inhibit the growth of three human glioma stem cells (GSC-3#, GSC-12# and GSC-18#).


Subject(s)
Nardostachys , Valerian , Humans , Iridoids , Molecular Structure , Neoplastic Stem Cells , Plant Roots
20.
Front Pharmacol ; 11: 244, 2020.
Article in English | MEDLINE | ID: mdl-32265692

ABSTRACT

In Cambodia, medicinal plants are often used to treat various illnesses. However, the identities of many medicinal plants remain unknown. In this study, we collected 50 types of traditional Cambodian medicinal plants that could not be identified by their appearance from a domestic market. We utilized the DNA barcoding technique, combined with the literature survey, to trace their identities. In the end, 33 species were identified at the species level and 7 species were identified at the genus level. The ethnopharmacological information of 33 medicinal plants was documented. The DNA barcoding technique is useful in the identification of medicinal plants with no previous information.

SELECTION OF CITATIONS
SEARCH DETAIL