Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Environ Sci Technol ; 58(18): 8065-8075, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38597221

ABSTRACT

We report a previously unrecognized but efficient reductive degradation pathway in peroxydisulfate (PDS)-driven soil remediation. With supplements of naturally occurring low-molecular-weight organic acids (LMWOAs) in anaerobic biochar-activated PDS systems, degradation rates of 12 γ-hexachlorocyclohexanes (HCH)-spiked soils boosted from 40% without LMWOAs to a maximum of 99% with 1 mM malic acid. Structural analysis revealed that an increase in α-hydroxyl groups and a diminution in pKa1 values of LMWOAs facilitated the formation of reductive carboxyl anion radicals (COO•-) via electrophilic attack by SO4•-/•OH. Furthermore, degradation kinetics were strongly correlated with soil organic matter (SOM) contents than iron minerals. Combining a newly developed in situ fluorescence detector of reductive radicals with quenching experiments, we showed that for soils with high, medium, and low SOM contents, dominant reactive species switched from singlet oxygen/semiquinone radicals to SO4•-/•OH and then to COO•- (contribution increased from 30.8 to 66.7%), yielding superior HCH degradation. Validation experiments using SOM model compounds highlighted critical roles of redox-active moieties, such as phenolic - OH and quinones, in radical formation and conversion. Our study provides insights into environmental behaviors related to radical activation of persulfate in a broader soil horizon and inspiration for more advanced reduction technologies.


Subject(s)
Soil , Soil/chemistry , Free Radicals/chemistry , Soil Pollutants/chemistry , Oxidation-Reduction , Halogenation
2.
J Food Prot ; 87(4): 100244, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38378071

ABSTRACT

Strawberries rapidly deteriorate postharvest, necessitating effective measures to extend their shelf life. This study focused on developing an eco-friendly chitosan-based protective film for strawberry preservation. Strawberries were treated with a coating solution containing varying concentrations of hawthorn leaf extract (HLE) (0.4%, 0.7%, and 1.0%), 1.5% chitosan (CH), and 1% acetic acid. The results demonstrated that coating strawberry fruit with 1% CH-HLE notably delayed fruit spoilage. In-depth analysis revealed that, compared with the uncoated strawberry fruits, the 1% CH-HLE coating effectively reduced weight loss, the respiration intensity, malondialdehyde (MDA) levels, and superoxide anion (O2·-) production. Additionally, the coated strawberries exhibited improved firmness, total soluble solids (TSS), vitamin C (Vc) content, titratable acidity (TA), and total phenolic compound (TPC) content. The enzyme activities of superoxide dismutase (SOD) and catalase (CAT) in the CH-HLE-coated strawberries were greater than those in their uncoated counterparts. The application of a 1% CH-HLE coating successfully delayed spoilage and extend the shelf life of the strawberries by approximately 4-5 days. These findings suggest that CH-HLE has significant potential as a resource for protecting fruits and vegetables, offering an environmentally sustainable solution for postharvest preservation.


Subject(s)
Chitosan , Crataegus , Fragaria , Food Preservation/methods , Chitosan/pharmacology , Fruit , Plant Extracts/pharmacology
3.
Metabolism ; 152: 155787, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38215964

ABSTRACT

Mitochondrial dysfunction plays a critical role in the pathogenesis of metabolic syndrome (MetS), affecting various cell types and organs. In MetS animal models, mitochondria exhibit decreased quality control, characterized by abnormal morphological structure, impaired metabolic activity, reduced energy production, disrupted signaling cascades, and oxidative stress. The aberrant changes in mitochondrial function exacerbate the progression of metabolic syndrome, setting in motion a pernicious cycle. From this perspective, reversing mitochondrial dysfunction is likely to become a novel and powerful approach for treating MetS. Unfortunately, there are currently no effective drugs available in clinical practice to improve mitochondrial function. Recently, L-lactate has garnered significant attention as a valuable metabolite due to its ability to regulate mitochondrial metabolic processes and function. It is highly likely that treating MetS and its related complications can be achieved by correcting mitochondrial homeostasis disorders. In this review, we comprehensively discuss the complex relationship between mitochondrial function and MetS and the involvement of L-lactate in regulating mitochondrial metabolism and associated signaling pathways. Furthermore, it highlights recent findings on the involvement of L-lactate in common pathologies of MetS and explores its potential clinical application and further prospects, thus providing new insights into treatment possibilities for MetS.


Subject(s)
Metabolic Syndrome , Mitochondrial Diseases , Animals , Metabolic Syndrome/metabolism , Lactic Acid/metabolism , Mitochondria/metabolism , Mitochondrial Diseases/metabolism , Dietary Supplements , Power, Psychological
4.
Biochim Biophys Acta Mol Basis Dis ; 1869(1): 166572, 2023 01 01.
Article in English | MEDLINE | ID: mdl-36252941

ABSTRACT

Recent studies suggest that deletion of the core clock gene Bmal1 in the kidney has a significant influence on renal physiological functions. However, the role of renal Bmal1 in chronic kidney disease (CKD) remains poorly understood. Here by generating mice lacking Bmal1 in proximal tubule (Bmal1flox/flox-KAP-Cre+, ptKO) and inducing CKD with the adenine diet model, we found that lack of Bmal1 in proximal tubule did not alter renal water and electrolyte homeostasis. However, adenine-induced renal injury indexes, including blood urea nitrogen, serum creatinine, and proteinuria, were markedly augmented in the ptKO mice. The ptKO kidneys also developed aggravated tubulointerstitial fibrosis and epithelial-mesenchymal transformation. Mechanistically, RNAseq analysis revealed significant downregulation of the expression of genes related to energy and substance metabolism, in particular fatty acid oxidation and glutathione/homocysteine metabolism, in the ptKO kidneys. Consistently, the renal contents of ATP and glutathione were markedly reduced in the ptKO mice, suggesting the disruption of cellular metabolic homeostasis. Moreover, we demonstrated that Bmal1 can activate the transcription of cystathionine ß-synthase (CBS), a key enzyme for homocysteine metabolism and glutathione biosynthesis, through direct recruitment to the E-box motifs of its promoter. Supporting the in vivo findings, knockdown of Bmal1 in cultured proximal tubular cells inhibited CBS expression and amplified albumin-induced cell injury and fibrogenesis, while glutathione supplementation remarkably reversed these changes. Taken together, we concluded that deletion of Bmal1 in proximal tubule may aggravate chronic kidney injury and exacerbate renal fibrosis, the mechanism is related to suppressing CBS transcription and disturbing glutathione related metabolic homeostasis. These findings suggest a protective role of Bmal1 in chronic tubular injury and offer a novel target for treating CKD.


Subject(s)
Kidney , Renal Insufficiency, Chronic , Mice , Animals , Kidney/pathology , Fibrosis , Renal Insufficiency, Chronic/pathology , Homeostasis , Adenine , Glutathione/metabolism , Homocysteine/metabolism
5.
Int J Med Mushrooms ; 24(10): 15-29, 2022.
Article in English | MEDLINE | ID: mdl-36374827

ABSTRACT

Considering the impact of oxidative stress on the development of many diseases, together with the role of natural antioxidants in maintaining physiological balance in humans, medicinal mushrooms are potential sources of bioactive compounds against many diseases. In the present work, in vitro evaluation of the biological activities of the alcoholic extracts of two wild tree mushrooms, namely, Ganoderma applanatum and Fomitopsis pinicola, has been performed. Extraction of G. applanatum (GAE) and F. pinicola (FPE) was conducted with 60% ethanol and 100% ethanol sequentially. UPLC-MS/MS identification was conducted on the two mushrooms extracts. A total of 15 substances were identified in GAE, including 3 spiro meroterpenoids and 12 triterpenoids; a total of 14 chemical constituents were iden¬tified in FPE, including 8 triterpenoids, 4 triterpene glycosides, 1 lanosterol, and 1 lanostanoid. The resulting extracts were examined for their in vitro antioxidative and cytoprotective effects against AAPH-induced oxidative damage. Our results demonstrated that both extracts have potent antioxidative activities, when GAE was 0.2 mg/mL, the clearance rates of DPPH and ABTS have reached 93.34% and 99.93%, respectively. When FPE was 1.4 mg/mL and 0.6 mg/mL, the scavenging rates of DPPH and ABTS have reached 91.76% and 100%, respectively. Both the alcoholic extracts of G. applanatum and F. pinicola were able to protect the AAPH-induced damage and could effectively inhibit cell aging via ß-galactosidase (SA ß-gal) staining activity test and scanning electron microscopy analysis.


Subject(s)
Adrenal Gland Neoplasms , Agaricales , Ganoderma , Pheochromocytoma , Triterpenes , Humans , Antioxidants/chemistry , Chromatography, Liquid , Tandem Mass Spectrometry , Agaricales/chemistry , Triterpenes/chemistry , Ethanol
6.
Biomaterials ; 104: 213-22, 2016 10.
Article in English | MEDLINE | ID: mdl-27467417

ABSTRACT

Nanodevices for multimodal tumor theranostics have shown great potentials for noninvasive tumor diagnosis and therapy, but the libraries of multimodal theranostic building blocks should be further stretched. In this work, Cu(II) ions are doped into polyaniline (Pani) nanoshuttles (NSs) to produce Cu-doped Pani (CuPani) NSs, which are demonstrated as new multimodal building blocks to perform tumor theranostics. The CuPani NSs are capable of shortening the longitudinal relaxation (T1) of protons under magnetic fields and can help light up tumors in T1-weighted magnetic resonance imaging. In addition, the released Cu(II) ions from CuPani NSs lead to cytotoxicity, showing the behavior of chemotherapeutic agent. The good photothermal performance of CuPani NSs also makes them as photothermal agents to perform thermochemotherapy. By combining near-infrared laser irradiation, a complete tumor ablation is achieved and no tumor recurrence is observed.


Subject(s)
Aniline Compounds/chemistry , Copper/therapeutic use , Laser Therapy/methods , Metal Nanoparticles/therapeutic use , Neoplasms, Experimental/diagnostic imaging , Neoplasms, Experimental/therapy , Theranostic Nanomedicine/methods , Animals , Contrast Media/chemistry , Copper/chemistry , HeLa Cells , Humans , Hyperthermia, Induced/methods , Infrared Rays/therapeutic use , Metal Nanoparticles/chemistry , Metal Nanoparticles/ultrastructure , Mice , Mice, Inbred BALB C , Mice, Nude , Phototherapy/methods , Treatment Outcome
SELECTION OF CITATIONS
SEARCH DETAIL