Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters

Database
Language
Publication year range
1.
Sci Rep ; 14(1): 3075, 2024 02 06.
Article in English | MEDLINE | ID: mdl-38321064

ABSTRACT

Non-alcoholic fatty liver disease (NAFLD) is one of the most common liver diseases worldwide and there is a huge unmet need to find safer and more effective drugs. Vitamin K has been found to regulate lipid metabolism in the liver. However, the effects of vitamin K2 on NAFLD is unclear. This study aims to evaluate the preventive and therapeutic effects of vitamin K2 in the process of fatty liver formation and to explore molecular mechanisms the associated with lipid metabolism. A non-alcoholic fatty liver model was established by high-fat diet administration for three months. Vitamin K2 significantly reduced the body weight, abdominal circumference and body fat percentage of NAFLD mice. Vitamin K2 also showed histological benefits in reducing hepatic steatosis. NAFLD mice induced by high-fat diet showed increased HMGR while vitamin K2 intervention could reverse the pathological lterations. Adiponectin (APN) is an endogenous bioactive polypeptide or protein secreted by adipocytes. We detected APN, SOD, AlaDH and other indicators that may affect the state of high-fat diet mice, but the experimental results showed that the above indicators did not change significantly. It is worth noting that the effect of vitamin K2 supplementation on the lipid-lowering effect of uc OC in vivo needs to be further explored. This study first reported the protective effect of vitamin K2 on high-fat diet-induced NAFLD in mice. The protective effect of vitamin K2 may be related to the improvement of lipid metabolism disorder in NAFLD.


Subject(s)
Non-alcoholic Fatty Liver Disease , Mice , Animals , Non-alcoholic Fatty Liver Disease/pathology , Vitamin K 2/metabolism , Diet, High-Fat , Liver/metabolism , Lipid Metabolism , Adiponectin/metabolism , Mice, Inbred C57BL
2.
Mol Med Rep ; 18(1): 3-15, 2018 Jul.
Article in English | MEDLINE | ID: mdl-29749440

ABSTRACT

In postmenopausal women and elderly men, bone density decreases with age and vascular calcification is aggravated. This condition is closely associated with vitamin K2 deficiency. A total of 17 different vitamin K­dependent proteins have been identified to date. Vitamin K­dependent proteins are located within the bone, heart and blood vessels. For instance, carboxylated osteocalcin is beneficial for bone and aids the deposition of calcium into the bone matrix. Carboxylated matrix Gla protein effectively protects blood vessels and may prevent calcification within the vascular wall. Furthermore, carboxylated Gla­rich protein has been reported to act as an inhibitor in the calcification of the cardiovascular system, while growth arrest­specific protein­6 protects endothelial cells and vascular smooth muscle cells, resists apoptosis and inhibits the calcification of blood vessels by inhibiting the apoptosis of vascular smooth muscle cells. In addition, periostin may promote the differentiation, aggregation, adhesion and proliferation of osteoblasts. Periostin also occurs in the heart and may be associated with the reconstruction of heart function. These vitamin K­dependent proteins may exert their functions following γ­carboxylation with vitamin K, and different vitamin K­dependent proteins may exhibit synergistic effects or antagonistic effects on each other. In the cardiovascular system with vitamin K antagonist supplement or vitamin K deficiency, calcification occurs in the endothelium of blood vessels and vascular smooth muscle cells are transformed into osteoblast­like cells, a phenomenon that resembles bone growth. Both the bone and cardiovascular system are closely associated during embryonic development. Thus, the present study hypothesized that embryonic developmental position and tissue calcification may have a certain association for the bone and the cardiovascular system. This review describes and briefly discusses several important vitamin K­dependent proteins that serve an important role in bone and the cardiovascular system. The results of the review suggest that the vascular calcification and osteogenic differentiation of vascular smooth muscle cells may be associated with the location of the bone and cardiovascular system during embryonic development.


Subject(s)
Aging/metabolism , Bone Density , Cardiovascular Diseases/metabolism , Osteoporosis, Postmenopausal/metabolism , Vitamin K/metabolism , Aged , Aged, 80 and over , Aging/pathology , Cardiovascular Diseases/pathology , Female , Humans , Male , Middle Aged , Osteoporosis, Postmenopausal/pathology
3.
Diabetes Res Clin Pract ; 136: 39-51, 2018 Feb.
Article in English | MEDLINE | ID: mdl-29196151

ABSTRACT

Type 2 diabetes mellitus (T2DM) continue to be a major public health problem around the world that frequently presents with microvascular and macrovascular complications. Individuals with T2DM are not only suffering from significant emotional and physical misery, but also at increased risk of dying from severe complications. In recent years, evidence from prospective observational studies and clinical trials has shown T2DM risk reduction with vitamin K2 supplementation. We thus did an overview of currently available studies to assess the effect of vitamin K2 supplementation on insulin sensitivity, glycaemic control and reviewed the underlying mechanisms. We proposed that vitamin K2 improved insulin sensitivity through involvement of vitamin K-dependent-protein osteocalcin, anti-inflammatory properties, and lipid-lowering effects. Vitamin K2 had a better effect than vitamin K1 on T2DM. The interpretation of this review will increase comprehension of the development of a therapeutic strategy to prevent and treat T2DM.


Subject(s)
Diabetes Mellitus, Type 2/drug therapy , Vitamin K 2/therapeutic use , Adult , Aged , Diabetes Mellitus, Type 2/pathology , Female , Humans , Male , Middle Aged , Prospective Studies , Vitamin K 2/pharmacology , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL