Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Environ Sci Technol ; 55(22): 15082-15089, 2021 11 16.
Article in English | MEDLINE | ID: mdl-34723496

ABSTRACT

Layered double hydroxides (LDHs) are potential low-cost filter materials for use in fluoride removal from drinking water, but molecular-scale defluoridation mechanisms are lacking. In this research, we employed 19F solid-state NMR spectroscopy to identify fluoride sorption products on 2:1 MgAl LDH and to reveal the relationship between fluoride sorption and the LDH structure. A set of six 19F NMR peaks centered at -140, -148, -156, -163, -176, and -183 ppm was resolved. Combining quantum chemical calculations based on density function theory (DFT) and 19F{27Al} transfer of populations in double resonance (TRAPDOR) analysis, we could assign the peaks at -140, -148, -156, and -163 ppm to Al-F (F coordinated to surface Al) and those at -176 and -183 ppm to Mg-F (F coordinated to surface Mg only). Interestingly, the spectroscopic data reveal that the formation of Al-F is the predominant mode of F- sorption at low pH, whereas the formation of Mg-F is predominant at high pH (or a higher Mg/Al ratio). This finding supports the fact that the F- uptake of 2:1 MgAl LDH was nearly six times that of activated alumina at pH 9. Overall, we explicitly revealed the different roles of the surface >MgOH and >AlOH sites of LDHs in defluoridation, which explained why the use of classic activated alumina for defluoridation is limited at high pH. The findings from this research may also provide new insights into material screening for potential filters for F- removal under alkaline conditions.


Subject(s)
Fluorides , Hydroxides , Adsorption , Aluminum Oxide , Magnetic Resonance Spectroscopy
2.
Nat Prod Res ; 31(23): 2745-2752, 2017 Dec.
Article in English | MEDLINE | ID: mdl-28278628

ABSTRACT

A new natural mycotoxin was isolated from the fermentation broth of Trichoderma sp. Jing-8 and the structure was determined as alternariol 1'-hydroxy-9-methyl ether (1), together with twelve known compounds. The structures were elucidated on the basis of their 1D, 2D NMR spectra and mass spectrometric data. Compounds 1, 8 and 9 indicated inhibitions against germination of the seeds of cabbage with MICs < 3 µg/mL. The compound 1 showed the antibacterial activity against Bacillus subtilis and Staphylococcus aureus with MICs at 64 µg/mL. Compound 1 and 3 showed significant DPPH radical-scavenging activities with IC50 at 12 µg/mL, respectively. The OH at C-1' in compound 1 decreased the cytotoxicity of these mycotoxins. A primary structure-activity relationship about the alternariol derivatives was discussed. Compounds 2-7 and 8 were the first time to be isolated from the Trichoderma.


Subject(s)
Anti-Bacterial Agents/pharmacology , Antioxidants/pharmacology , Mycotoxins/pharmacology , Trichoderma/chemistry , Anti-Bacterial Agents/chemistry , Antioxidants/chemistry , Bacillus subtilis/drug effects , Brassica/drug effects , Brassica/physiology , Cell Line, Tumor , Drug Evaluation, Preclinical/methods , Germination/drug effects , Humans , Lactones/chemistry , Microbial Sensitivity Tests , Molecular Structure , Mycotoxins/chemistry , Seeds/drug effects , Seeds/physiology , Staphylococcus aureus/drug effects , Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL