Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 63
Filter
Add more filters

Complementary Medicines
Therapeutic Methods and Therapies TCIM
Country/Region as subject
Publication year range
1.
Front Pharmacol ; 15: 1370631, 2024.
Article in English | MEDLINE | ID: mdl-38606177

ABSTRACT

Introduction: Rana dybowskii Guenther (RDG), as a traditional Chinese medicine, has been shown to have antioxidant effects. However, studies on the anti-aging effect of RDG are still limited. Methods: In this study, we prepared polysaccharides from the skin of RDG (RDGP) by hot water extraction, alcohol precipitation, ion-exchange chromatography and gel chromatography. The proteins were removed using the Sevage method in combination with an enzymatic method. The structural features were analyzed using high-performance gel permeation chromatography, ß-elimination reaction and Fourier transform infrared spectra. The anti-aging effect of RDGP was investigated by using D-Gal to establish an aging model in mice, and pathological changes in the hippocampus were observed under a microscope. Results: We obtained the crude polysaccharide DGP from the skin of RDG, with a yield of 61.8%. The free protein was then removed by the Sevage method to obtain DGPI and deproteinated by enzymatic hydrolysis combined with the Sevage method to further remove the bound protein to obtain the high-purity polysaccharide DGPII. Then, DGPIa (1.03 × 105 Da) and DGPIIa (8.42 × 104 Da) were obtained by gel chromatography, monosaccharide composition analysis showed that they were composed of Man, GlcA, GalNAc, Glc, Gal, Fuc with molar ratios of 1: 4.22 : 1.55: 0.18 : 8.05: 0.83 and 0.74 : 1.78: 1: 0.28: 5.37 : 0.36, respectively. The results of the ß-elimination reaction indicated the presence of O-glycopeptide bonds in DGPIa. The Morris water maze test indicated that mice treated with DGPIIa exhibited a significantly shorter escape latency and increased time spent in the target quadrant as well as an increase in the number of times they traversed the platform. Pathologic damage to the hippocampus was alleviated in brain tissue stained with hematoxylin-eosin. In addition, DGPIIa enhanced the activities of SOD, CAT, and GSH-Px and inhibited the level of MDA in the serum and brain tissues of aging mice. Discussion: These results suggest that RDGP has potential as a natural antioxidant and provide useful scientific information for anti-aging research.

2.
Zhongguo Zhong Yao Za Zhi ; 49(3): 625-633, 2024 Feb.
Article in Chinese | MEDLINE | ID: mdl-38621866

ABSTRACT

Extracts are important intermediates in the production of traditional Chinese medicines preparations. The drying effect of extracts will directly affect the subsequent production process and the quality of the preparation. To meet the requirements of high drug loading, short time consumption, and simple production process of personalized traditional Chinese medicine preparations, this study explored the application of multi-program microwave vacuum drying process in the extract drying of personalized traditional Chinese medicine preparations. The influencing factors of microwave vacuum drying process were investigated for 5 excipients and 40 prescriptions. Taking the feasibility of drying, drying rate, drying time, and dried extract status as indicators, this study investigated the feeding requirements of microwave vacuum drying. With the dried extract status as the evaluation indicator, the three drying programs(A, B, and C) were compared to obtain the optimal drying condition. The experimental results showed that the optimal feeding conditions for microwave vacuum drying were material layer thickness of 2 cm and C program(a total of 7 drying processes), which solved the problem of easy scorching in microwave drying with process management. Furthermore, the preset moisture content of the dried extract in microwave drying should be 4%-5%, so that the dried extract of traditional Chinese medicine preparation had uniform quality, complete drying, and no scorching. This study lays a foundation for the application of microwave drying in the production of traditional Chinese medicine preparations, promoting the high-quality development of personalized traditional Chinese medicine preparations.


Subject(s)
Medicine, Chinese Traditional , Microwaves , Vacuum , Desiccation/methods , Plant Extracts
3.
Environ Sci Pollut Res Int ; 30(60): 125718-125730, 2023 Dec.
Article in English | MEDLINE | ID: mdl-38001297

ABSTRACT

Blackwater occurs every winter in reservoirs with Eucalyptus plantations. The complexation reaction between ferric iron (Fe3+) and Eucalyptus leachate tannic acid from logging residues (especially leaves) is the vital cause of water blackness. However, the effect of Eucalyptus leaf leaching on the dynamic of iron in sediments and its contribution to reservoir blackwater remain unclear. In this study, two experiments were conducted to simulate the early decomposition processes of exotic Eucalyptus and native Pinus massoniana leaves in water (LW) and water-sediment (LWS) systems. In LW, high concentrations of tannic acid (>45.25 mg/L) rapidly leached from the Eucalyptus leaves to the water column, exceeding those of Pinus massoniana leaves (<1.80 mg/L). The chrominance increased from 5~10 to 80~140, and the water body finally appeared brown instead of black after the leaching of Eucalyptus leaves. The chrominance positively correlated with tannic acid concentrations (R=0.970, p<0.01), indicating that tannic acid was vital for the water column's brown color. Different in LWS, blackwater initially emerged near the sediment-water interface (SWI) and extended upward to the entire water column as Eucalyptus leaves leached. Dissolved oxygen (DO) and transmission values in the overlying water declined simultaneously (R>0.77, p<0.05) and were finally below 2.29 mg/L and 10%, respectively. During the leaching of Eucalyptus leaves, the DGT-labile Fe2+ in sediments migrated from deep to surface layers, and the diffusive fluxes of Fe2+ at the SWI increased from 12.42~19.93 to 18.98~26.28 mg/(m2·day), suggesting that sediment released abundant Fe3+ into the aerobic overlying water. Fe3+ was exposed to high concentrations of tannic acid at the SWI and immediately generated the black Fe-tannic acid complex. The results indicated that the supplement of dissolved Fe3+ from sediments is a critical factor for the periodic blackwater in the reservoirs with Eucalyptus plantations. Reducing the cultivation of Eucalyptus in the reservoir catchment is one of the effective ways to alleviate the reservoir blackwater.


Subject(s)
Eucalyptus , Water Pollutants, Chemical , Iron/chemistry , Water Pollutants, Chemical/analysis , Geologic Sediments/chemistry , Water , Phosphorus/analysis , Environmental Monitoring/methods
4.
Sci Total Environ ; 904: 166811, 2023 Dec 15.
Article in English | MEDLINE | ID: mdl-37673249

ABSTRACT

A novel wastewater treatment plant process was constructed to overcome the challenge of simultaneous nitrate removal and phosphorus (P) recovery. The results revealed that the P and nitrate removal efficiency rose from 39.0 % and 48.4 % to 92.8 % and 93.6 % after 136 days of operation, and the total P content in the biofilm (TPbiofilm) rose from 15.8 mg/g SS to 57.8 mg/g SS. Moreover, the increase of TPbiofilm changed the metabolic mode of denitrifying polyphosphate accumulating organisms (DPAOs), increasing the P concentration of the enriched stream to 172.5 mg/L. Furthermore, the acid/alkaline fermentation led to the rupture of the cell membrane, which released poly-phosphate and ortho-phosphate of cell/EPS in DPAOs and released metal­phosphorus (CaP and MgP). In addition, high-throughput sequencing analysis demonstrated that the relative abundance of DPAOs involved in P storage increased, wherein the abundance of Acinetobacter and Saprospiraceae rose from 8.0 % and 4.1 % to 16.1 % and 14.0 %. What's more, the highest P recovery efficiency (98.3 ± 1.1 %) could be obtained at optimal conditions for struvite precipitation (pH = 7.56 and P: N: Mg = 1.87:3.66:1) through the response surface method (RSM) simulation, and the precipitates test analysis indicated that P recovery from biofilm sludge was potentially operable. This research was of great essentiality for exploring the recovery of P from biofilm sludge.


Subject(s)
Phosphorus , Sewage , Phosphorus/metabolism , Nitrates/metabolism , Denitrification , Anaerobiosis , Bioreactors , Polyphosphates , Biofilms , Waste Disposal, Fluid/methods , Nitrogen
5.
Bioresour Technol ; 384: 129284, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37302767

ABSTRACT

A novel process was proposed for simultaneous denitrification and phosphorus (P) recovery. The increased nitrate concentration facilitated the activity of denitrifying P removal (DPR) in P enrichment, which stimulated P uptake and storage, making P more readily accessible for release into the recirculated stream. The total P content in the biofilm (TPbiofilm) rose to 54.6 ± 3.5 mg/g SS as the nitrate concentration increased from 15.0 to 25.0 mg/L, while the P concentration of the enriched stream reached 172.5 ± 3.5 mg/L. Moreover, the abundance of denitrifying polyphosphate accumulating organisms (DPAOs) increased from 5.6% to 28.0%, and the increased nitrate concentration facilitated the process of carbon, nitrogen, and P metabolism due to the rise in the genes involved in critical functions of metabolism. Acid/alkaline fermentation analysis indicated that the EPS release was the primary P-release pathway. Additionally, pure struvite crystals were obtained from the enriched stream and fermentation supernatant.


Subject(s)
Sewage , Wastewater , Phosphorus/metabolism , Nitrates , Denitrification , Bioreactors , Organic Chemicals , Nitrogen , Waste Disposal, Fluid
6.
Article in English | MEDLINE | ID: mdl-37384958

ABSTRACT

The oviduct of female Rana dybowskii is a functional food and can be used as a component of Traditional Chinese medicine. The differentially expressed genes enriched was screened in cell growth of three Rana species. We quantitatively analyzed 4549 proteins using proteomic techniques, enriching the differentially expressed proteins of Rana for growth and signal transduction. The results showed that log2 expression of hepatoma-derived growth factor (HDGF) was increased. We further verified 5 specific differential genes (EIF4a, EIF4g, HDGF1, HDGF2 and SF1) and found that HDGF expression was increased in Rana dybowskii. Through acetylation modification analysis, we identified 1534 acetylation modification sites in 603 proteins, including HDGF, and found that HDGF acetylation expression was significantly reduced in Rana dybowskii. Our results suggest that HDGF is involved in the development of oviductus ranae, which is regulated by acetylation modification.


Subject(s)
Oviducts , Proteomics , Humans , Female , Animals , Acetylation , Oviducts/metabolism , Ranidae/metabolism
7.
Aging Cell ; 22(9): e13912, 2023 09.
Article in English | MEDLINE | ID: mdl-37365714

ABSTRACT

Age-related osteoporosis is associated with increased oxidative stress and cellular senescence. Pyrroloquinoline quinone (PQQ) is a water-soluble vitamin-like compound that has strong antioxidant capacity; however, the effect and underlying mechanism of PQQ on aging-related osteoporosis remain unclear. The purpose of this study was to investigate whether dietary PQQ supplementation can prevent osteoporosis caused by natural aging, and the potential mechanism underlying PQQ antioxidant activity. Here, we found that when 6-month-old or 12-month-old wild-type mice were supplemented with PQQ for 12 months or 6 months, respectively, PQQ could prevent age-related osteoporosis in mice by inhibiting osteoclastic bone resorption and stimulating osteoblastic bone formation. Mechanistically, pharmmapper screening and molecular docking studies revealed that PQQ appears to bind to MCM3 and reduces its ubiquitination-mediated degradation; stabilized MCM3 then competes with Nrf2 for binding to Keap1, thus activating Nrf2-antioxidant response element (ARE) signaling. PQQ-induced Nrf2 activation inhibited bone resorption through increasing stress response capacity and transcriptionally upregulating fibrillin-1 (Fbn1), thus reducing Rankl production in osteoblast-lineage cells and decreasing osteoclast activation; as well, bone formation was stimulated by inhibiting osteoblastic DNA damage and osteocyte senescence. Furthermore, Nrf2 knockout significantly blunted the inhibitory effects of PQQ on oxidative stress, on increased osteoclast activity and on the development of aging-related osteoporosis. This study reveals the underlying mechanism of PQQ's strong antioxidant capacity and provides evidence for PQQ as a potential agent for clinical prevention and treatment of natural aging-induced osteoporosis.


Subject(s)
Bone Resorption , Osteoporosis , Mice , Animals , Antioxidants/metabolism , PQQ Cofactor/pharmacology , PQQ Cofactor/metabolism , PQQ Cofactor/therapeutic use , NF-E2-Related Factor 2/metabolism , Kelch-Like ECH-Associated Protein 1/metabolism , Up-Regulation , Fibrillin-1/metabolism , Molecular Docking Simulation , Oxidative Stress , Aging , Osteoporosis/drug therapy , Osteoporosis/metabolism , Bone Resorption/drug therapy
8.
Water Res ; 240: 120092, 2023 Jul 15.
Article in English | MEDLINE | ID: mdl-37220697

ABSTRACT

Comprehension of the spatial and temporal characteristics of non-point source (NPS) pollution risk in watersheds is essential for NPS pollution research and scientific management. Although the concept of water functional zones (WFZ) has been considered in the NPS pollution risk assessment process. However, no comprehensive study of the NPS pollution risk has been conducted to effectively protect water quality in watersheds with different water environment capacity. Therefore, this study proposes a new NPS pollution risk assessment method that integrates water functional zoning, receiving water body environmental capacity, and space-time distribution of pollution load for quantifying the impact of pollution discharge from sub-catchment on nearby water body quality. Based on the NPS nutrient loss process modeled by the Soil and Water Assessment Tool (SWAT), this method was used to assess the NPS pollution risk in the Le 'an River Watershed at annual and monthly scales. The results showed that the NPS pollution risk is characterized by seasonal and spatial variability and is influenced clearly by the water environment capacity. High NPS pollution loads are not necessarily high pollution risks. Conversely, a low NPS nutrient pollution load does not represent a low regional risk sensitivity. In addition, NPS risk assessment based on the water environment capacity could also distinguish the differences in risk levels that were masked by similar NPS pollutant loss and the same water function zoning to achieve accurate control of NPS pollution management in watersheds.


Subject(s)
Non-Point Source Pollution , Water Pollutants, Chemical , Non-Point Source Pollution/analysis , Environmental Monitoring/methods , Phosphorus/analysis , Water Pollutants, Chemical/analysis , Nitrogen/analysis , Water Quality , Rivers , China , Water Pollution
9.
Environ Sci Pollut Res Int ; 30(13): 35602-35616, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36534258

ABSTRACT

Blue-green algae (CyanoHABs), photosynthetic bacteria that create a harmful aquatic environment, have been a trending issue on Taihu for over a decade. CyanoHABs adapt to varying climatic changes, which explains why the problem on Taihu still thrives. One major drive that keeps the algae is Sediment Oxygen Demand (SOD). In this paper, seasonal and spatial variations of SOD that contribute immensely to nutrient growth in Lake Taihu were done using the Environmental Fluid Dynamics Code (EFDC). The results were analyzed based on Nitrogenous SOD (NSOD) and Total SOD (TSOD). Summer results ranged from - 0.05754 to - 0.0826 (- 0.75658 to - 0.83902) (g/m2/day) and Winter values ranged from - 0.3022 to - 0.40171 (- 1.34486 to - 1.48856) (g/m2/day) indicate a gradual decrease in NSOD (TSOD) values respectively. Relatively higher values in summer are attributed to warmer surface water which sets up thermal stratification to increase the internal loading of nitrogen. Lower winter values are related to inverse stratification, where lower oxygen concentration decreases the SOD to trigger ammonium accumulation in the water column. NSOD (TSOD) values for Autumn results ranged from - 0.1039 to - 0.24786 (- 0.96251 to - 1.39454) (g/m2/day) and Spring values of - 0.43019 to - 0.35959 (- 1.48297 to - 0.54089) (g/m2/day). Transition seasons (i.e., Autumn and Spring) results are impacted by wind mixing that allows dissolved oxygen and nutrients in the whole water column. However, spring values depict a gradual increase in SOD value attributed to spring turnover and gradual stratification, which decrease nutrient concentration. In contrast, decreasing SOD values in autumn are related to mixing, but temperature decreases tend to increase nutrient concentrations. Carbonaceous sediment oxygen demand (CSOD), due to sulfide oxidation, presents high values from the difference between TSOD and NSOD. Based on the high values of CSOD, it is highly recommended that more research on eutrophic Taihu lakes would consider delving into CSOD.


Subject(s)
Environmental Monitoring , Phosphorus , Phosphorus/analysis , Lakes , Water , China , Eutrophication , Nitrogen/analysis , Seasons , Oxygen
10.
Sci Total Environ ; 862: 161219, 2023 Mar 01.
Article in English | MEDLINE | ID: mdl-36584951

ABSTRACT

Constructed wetlands as natural process-based water treatment technologies are popular globally. However, lack of detailed long-term assessment on the impact of seasonal variations on their performance with focus on optimal seasonal adjustments of controllable operating parameters significantly limits their efficient and sustainable long-term operation. To address this, a full-scale integrated multiple surface flow constructed wetlands-pond system situated between slightly polluted river water and outflow-receiving waterworks in a subtropical monsoon climate area of middle-eastern China was seasonally assessed over a period of six years. During this period, the removal rate (R) and mass removal rate (MRR) of total nitrogen (TN), total phosphorus (TP) and chemical oxygen demand (COD) possessed strong seasonality (p < 0.05). The highest R (%) and MRR (mg/m2/d) were in summer for TN (51.53 %, 114.35), COD (16.30 %, 143.85) and TP (62.39 %, 23.89) and least in spring for TN (23.88 %, 39.36) and COD. Whereas for TP, the least R was in autumn (37.82 %) and least MRR was in winter (9.35). Applying a first-order kinetics model coupled with Spearman's rank correlation analysis, purification efficiency exhibited significant dependence on temperature as nutrient reaction rates constant, k generally increased with temperature and was highest in summer. Meanwhile, the R of TN, TP and COD were positively correlated with influent concentration whiles MRR of TP was negatively correlated with hydraulic retention time but positively correlated with hydraulic loading rate (HLR) (p < 0.05). Also, MRR of COD and TN were positively correlated with mass loading rates (MLR) in summer and autumn. Through linear optimization, the best operating parameters according to the compliance rate were determined and a set of guidelines were proposed to determine the optimal operational change of hydrological index in each season (Spring, 0.1-0.12 m/d; Summer, 0.14-0.16 m/d; Autumn, 0.15-0.17 m/d; Winter, 0.1-0.11 m/d) for efficient and sustainable long-term operation.


Subject(s)
Water Purification , Wetlands , Seasons , Ponds , Water Pollution/analysis , Nitrogen/analysis , Phosphorus/analysis , Waste Disposal, Fluid
11.
J Environ Manage ; 325(Pt B): 116583, 2023 Jan 01.
Article in English | MEDLINE | ID: mdl-36308955

ABSTRACT

The alternating aerobic/anaerobic biofilm system had been applied for phosphorus (P) enrichment and recovery because of the advantage of low energy consumption and high efficiency. The metal ions and N-acyl-L-homoserine lactones (AHLs) in system were studied to better clarify the mechanism of P uptake/release under metal ion stress. The results indicated that the increase of metal ions stimulated the release of AHLs, and AHLs-guided quorum sensing (QS) enhanced P uptake. Moreover, biomineralization could stimulate the increase of P content in biofilm (Pbiofilm). Meanwhile, some ortho-p was converted to short-chain poly-p in extracellular polymer substance (EPS), and others were transferred into cell through EPS to synthesize poly-p. With the Pbiofilm increased, more P could be absorbed/released due to the shift in the metabolic model of polyphosphate accumulating organisms (PAOs). The release of AHLs between microorganisms was also inhibited when PAOs reached the state of P saturation (75.6 ± 2.5 mg/g SS), which meant that the effect of signaling function would tend to stabilize, and the 169.2 ± 2.6 mg/L P concentration in the enriched solution was obtained due to the P release was inhibited. Moreover, P was rapidly transferred to the new enriched solution after the P was recovered, and PAOs restored its capability of P uptake/release. In addition, 31P-NMR analysis demonstrated that EPS played a major role in PAOs compared to cell, and inorganic phosphorus (IP) played an essential role in the uptake/release of P compared to organic phosphorus (OP). Furthermore, the microbiological analysis showed that Candidatus Accumulibacter was positively correlated with AHLs (P < 0.05). This study provided essential support for clarifying the P metabolism mechanism of PAOs.


Subject(s)
Acyl-Butyrolactones , Quorum Sensing , Acyl-Butyrolactones/metabolism , Phosphorus , Anaerobiosis , Biomineralization , Biofilms , Polyphosphates , Metals
12.
Theriogenology ; 193: 68-76, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36156426

ABSTRACT

Vitamin D (VD) deficiency plays an important role in the occurrence and development of various uterine diseases. At present, most studies on the mechanism of VD in the Wnt signaling pathway focus on cancer, while there are no relevant reports on its mechanism in endometritis. This study investigated the effect of vitamin D3 (VD3) on the Wnt signaling pathway in endometrial epithelial cells (BEECs) induced by lipopolysaccharide (LPS). BEECs obtained from bovine uteri were treated with VD3 (0, 50 ng/mL) and LPS (0, 10, 100 ng/mL) separately or in combination, and treated with the Wnt signaling pathway inhibitor IWR-1 to study the mechanism of action. The proliferation of BEECs was evaluated by a CCK-8 assay. qRT-PCR was used to assess the gene expression of Wnt pathway-related factors, including MYC, PCNA, LGR5, GREM1, ß-catenin, FZD7, FZD2, Wnt4 and VDR. The results showed that VD3 had no significant effect on cell proliferation (P > 0.05); LPS inhibited BEEC proliferation in a time- and dose-dependent manner, and cells treated with LPS at different concentrations for 24-48 h in combination with VD3 promoted cell proliferation to varying degrees. IWR-1 inhibited cell proliferation in a time- and concentration-dependent manner, while LPS + IWR-1 treatment also significantly promoted cell proliferation after VD3 treatment (P < 0.01). The qRT-PCR results showed that the expression of Wnt4 and PCNA genes showed different trends with different LPS concentrations for stimulation, and the expression of the MYC and GREM1 genes was only stimulated by high-dose (100 ng/mL) LPS stimulation. The expression of FZD7, LGR5, FZD2 and ß-catenin was upregulated by LPS at both concentrations. LPS + VD3 significantly downregulated the expression of the Wnt pathway-related genes MYC, PCNA, LGR5, GREM1 and ß-catenin (P < 0.001), Wnt4 and FZD2 (P < 0.01), and significantly upregulated the expression of VDR (P < 0.05). After LPS + IWR-1 treatment, the expression of the ß-catenin (P < 0.01) and LGR5 (P < 0.05) genes was significantly downregulated, while the Wnt4 (P < 0.01) and VDR (P < 0.001) genes were significantly upregulated, MYC was downregulated but without a significant difference (P > 0.05). In conclusion, VD3 treatment can mitigate the LPS-induced abnormal expression of Wnt signaling pathway genes in BEECs, showing that the Wnt pathway may be a protective pathway of VD3 against LPS-induced gene overexpression in BEECs. The results suggest that VD3 may play a regulatory role in pathways other than the Wnt signaling pathway. Whether VD3 affects the Wnt signaling pathway by affecting Wnt4 gene expression requires further study.


Subject(s)
Wnt Signaling Pathway , beta Catenin , Animals , Cattle , Cell Proliferation , Cholecalciferol/pharmacology , Epithelial Cells/metabolism , Female , Lipopolysaccharides/pharmacology , Proliferating Cell Nuclear Antigen/metabolism , Wnt Signaling Pathway/genetics , beta Catenin/metabolism
13.
BMC Complement Med Ther ; 22(1): 213, 2022 Aug 09.
Article in English | MEDLINE | ID: mdl-35945571

ABSTRACT

BACKGROUND: Salvia-Nelumbinis naturalis (SNN), the extract of Chinese herbal medicine, has shown effects on NAFLD. This study aims to explore the underlying mechanism of SNN for regulating the lipid metabolism disorder in NAFLD based on the SIRT1/AMPK signaling pathway. METHODS: Male C57BL/6J mice fed with a high-fat diet (HFD) were used to establish the NAFLD model. Dynamic changes of mice including body weight, liver weight, serological biochemical indexes, liver histopathological changes, and protein level of AMPK and SIRT1 were monitored. After18 weeks, SNN treatment was administrated to the NAFLD mice for another 4 weeks. Besides the aforementioned indices, TC and TG of liver tissues were also measured. Western blot and quantitative RT-PCR were used to detect the expression and/or activation of SIRT1 and AMPK, as well as the molecules associated with lipid synthesis and ß-oxidation. Furthermore, AML12 cells with lipid accumulation induced by fatty acids were treated with LZG and EX527 (SIRT1 inhibitor) or Compound C (AMPK inhibitor ) to confirm the potential pharmacological mechanism. RESULTS: Dynamic observation found the mice induced by HFD with gradually increased body and liver weight, elevated serum cholesterol, hepatic lipid accumulation, and liver injury. After 16 weeks, these indicators have shown obvious changes. Additionally, the hepatic level of SIRT1 and AMPK activation was identified gradually decreased with NAFLD progress. The mice with SNN administration had lower body weight, liver weight, and serum level of LDL-c and ALT than those of the NAFLD model. Hepatosteatosis and hepatic TG content in the liver tissues of the SNN group were significantly reduced. When compared with control mice, the NAFLD mice had significantly decreased hepatic expression of SIRT1, p-AMPK, p-ACC, ACOX1, and increased total Acetylated-lysine, SUV39H2, and SREBP-1c. The administration of SNN reversed the expression of these molecules. In vitro experiments showed the effect of SNN in ameliorating hepatosteatosis and regulating the expression of lipid metabolism-related genes in AML12 cells, which were diminished by EX527 or Compound C co-incubation. CONCLUSIONS: Taken together, the SIRT1/AMPK signaling pathway, involved in hepatic lipid synthesis and degradation, plays a pivotal role in the pathogenesis of NAFLD development. The regulation of SIRT1/AMPK signaling greatly contributes to the underlying therapeutic mechanism of SNN for NAFLD.


Subject(s)
Non-alcoholic Fatty Liver Disease , Salvia , AMP-Activated Protein Kinases/metabolism , Animals , Body Weight , Fatty Acids/pharmacology , Lipid Metabolism , Male , Mice , Mice, Inbred C57BL , Non-alcoholic Fatty Liver Disease/drug therapy , Salvia/chemistry , Signal Transduction , Sirtuin 1/metabolism
14.
Chin J Integr Med ; 28(9): 785-793, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35840853

ABSTRACT

OBJECTIVE: To investigate the regulatory roles of Shexiang Baoxin Pill (SXBXW) in neointimal formation and vascular smooth muscle cells (VSMCs) invasion and apoptosis as well as the potential molecular mechanisms using cultured VSMCs model of vascular injury (platelet-derived growth factor (PDGF)-BB-stimulated) in vitro. METHODS: VSMCs were randomly assigned to 5 groups: blank, PDGF-BB (20 ng/mL+ 0.1% DMSO), SXBXW-L (PDGF-BB 20 ng/mL + SXBXW low dose 0.625 g/L), SXBXW-M (PDGF-BB 20 ng/mL + SXBXW medium dose 1.25 g/L) and SXBXW-H (PDGF-BB 20 ng/mL+ SXBXW high dose 2.5 g/L) group. Cell proliferation was assessed using cell counting kit-8 (CCK-8) assay and bromodeoxyuridine (BrdU) incorporation assay, the migration effects were detected by Transwell assay, cell apoptosis rate was measured by the Annexin V/propidium iodide (PI) apoptosis kit. The markers of contractile phenotype of VSMCs were detected with immunofluorescent staining. To validate the effects of miR-451 in regulating proliferation, migration and apoptosis treated with SXBXW, miR-451 overexpression experiments were performed, the VSMCs were exposed to PDGF-BB 20 ng/mL + 0.1% DMSO and later divided into 4 groups: mimic-NC (multiplicity of infection, MOI=50), SXBXW (1.25 g/L) + mimic-NC, mimic-miR451 (MOI=50), and SXBXW (1.25 g/L) + mimic-miR451, and alterations of proteins related to the miR-451 pathway were analyzed using Western blot. RESULTS: PDGF-BB induced VSMCs injury causes acceleration of proliferation and migration. SXBXW inhibited phenotypic switching, proliferation and migration and promoted cell apoptosis in PDGF-BB-induced VSMCs. In addition, miR-451 was shown to be down-regulated in the VSMCs following PDGF-BB stimulation. SXBXW treatment enhanced the expression of miR-451 in PDGF-BB-induced VSMCs (P<0.05). Compared with SXBXW + mimic-NC and mimic-miR451 groups, the expression of tyrosine 3-monooxygenase/tryptophan 5-monooxygenase activation protein zeta (Ywhaz) and p53 was further reduced in SXBXW + mimic-miR451 group, while activating transcription factor 2 (ATF2) was increased in VSMCs (P<0.05). CONCLUSION: SXBXW regulated proliferation, migration and apoptosis via activation of miR-451 through ATF2, p53 and Ywhaz in PDGF-BB-stimulated VSMCs.


Subject(s)
MicroRNAs , Muscle, Smooth, Vascular , Apoptosis , Becaplermin/metabolism , Becaplermin/pharmacology , Cell Movement , Cell Proliferation , Cells, Cultured , Dimethyl Sulfoxide/metabolism , Dimethyl Sulfoxide/pharmacology , Drugs, Chinese Herbal , Humans , Hyperplasia/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism , Myocytes, Smooth Muscle , Tumor Suppressor Protein p53/metabolism
15.
Sci Total Environ ; 839: 156375, 2022 Sep 15.
Article in English | MEDLINE | ID: mdl-35660438

ABSTRACT

The water quality of Le 'an River Watershed (LRW) is crucial to the water environmental safety of Poyang Lake, especially the concentration of nitrogen and phosphorus. The effect of climate and land use change on watershed water quality has always been under the attention of local managers. More importantly, the lack of detailed studies on climate and land use impact on river water quality has prevented sustainable water security management in the LRW. Therefore, this study aimed to quantify the weight of climate and land use on nutrient loss in the LRW, respectively. We divided the historical period (1990-2020) into six scenarios and a baseline scenario. TN and TP losses in the watershed were simulated using Soil and Water Assessment Tool (SWAT), and the weight of climate and land use were quantified in overall, by period, and by region. The results showed that the weight of climate was greatly higher than land use with values around 90%. However, the weight of land use had a positive cumulative effect in a certain period, and its influence could not be neglected. The climate in all scenarios led to a reduction in nutrient loss, while land use was found to slightly increase the nutrient loss yield. In addition to, unique regional topographic features, urbanization rates, and climatic conditions could cause spatial heterogeneity in the climatic and land use weights.


Subject(s)
Non-Point Source Pollution , China , Climate Change , Nitrogen/analysis , Phosphorus/analysis , Rivers
16.
Front Pharmacol ; 13: 863756, 2022.
Article in English | MEDLINE | ID: mdl-35592421

ABSTRACT

The activated c-Jun N-terminal kinase (JNK) specifically combined with SH3 domain-binding protein 5 (Sab) may mediate damage to the mitochondrial respiratory chain. Whether mitochondrial dysfunction induced by the JNK/Sab signaling pathway plays a pivotal role in the lipotoxic injury of nonalcoholic steatohepatitis (NASH) remains a lack of evidence. Scoparone, a natural compound from Traditional Chinese Medicine herbs, has the potential for liver protection and lipid metabolism regulation. However, the effect of scoparone on NASH induced by a high-fat diet (HFD) as well as its underlying mechanism remains to be elucidated. The HepG2 and Huh7 cells with/without Sab-knockdown induced by palmitic acid (PA) were used to determine the role of JNK/Sab signaling in mitochondrial dysfunction and cellular lipotoxic injury. To observe the effect of scoparone on the lipotoxic injured hepatocytes, different dose of scoparone together with PA was mixed into the culture medium of HepG2 and AML12 cells to incubate for 24 h. In addition, male C57BL/6J mice were fed with an HFD for 22 weeks to induce the NASH model and were treated with scoparone for another 8 weeks to investigate its effect on NASH. Molecules related to JNK/Sab signaling, mitochondrial function, and lipotoxic injury were detected in in vitro and/or in vivo experiments. The results showed that PA-induced activation of JNK/Sab signaling was blocked by Sab knockdown in hepatocytes, which improved mitochondrial damage, oxidative stress, hepatosteatosis, cell viability, and apoptosis. Scoparone demonstrated a similar effect on the PA-induced hepatocytes as Sab knockdown. For the NASH mice, treatment with scoparone also downregulated the activation of JNK/Sab signaling, improved histopathological changes of liver tissues including mitochondrial number and morphology, lipid peroxide content, hepatosteatosis and inflammation obviously, as well as decreased the serum level of lipid and transaminases. Taken together, this study confirms that activation of the JNK/Sab signaling pathway-induced mitochondrial dysfunction plays a crucial role in the development of NASH. Scoparone can improve the lipotoxic liver injury partially by suppressing this signaling pathway, making it a potential therapeutic compound for NASH.

17.
Front Pharmacol ; 13: 878526, 2022.
Article in English | MEDLINE | ID: mdl-35517807

ABSTRACT

Aim: The present study aimed to explore the potential herb-drug interactions (HDI) between Shengmai injection (SMI) and losartan potassium (LOS) based on the expression profiles of cytochromes P450 (CYP450) and drug transporters in rat and in vitro. Methods: Different concentrations of SMI were used to explore the influence of SMI on the antihypertensive efficacy of LOS in the hypertension rat model established by N (omega)-nitro-L-arginine methyl ester (L-NAME) for 4 weeks. Subsequently, the serum concentration levels of LOS and losartan carboxylic acid (EXP3174) were determined by Liquid Chromatography Mass Spectrometry (LC-MS) and pharmacokinetic analysis. Human liver microsomes, human multidrug resistance protein 1 (MDR1/P-gp), and breast cancer resistance protein (BCRP) vesicles, human embryonic kidney 293 cell line with stable expression of the organic anion transporting polypeptide 1B1 (HEK293-OATP1B1 cells) and mock-transfected HEK293 (HEK293-MOCK) cells were used to verify the effects of SMI on CYP450 enzymes and drug transporters in vitro. Results: Low, medium, and high concentrations of SMI increased the antihypertensive efficacy of LOS to varying degrees. The high dose SMI increased the half-life (t 1/2 ), the maximum plasma concentration (C max), the area under the plasma concentration-time curve (AUC) from time zero to the time of the last measurable plasma concentration (AUC 0-t ), AUC from time zero to infinity (AUC 0-∞ ), and mean residence time (MRT) values of LOS and decreased its apparent volume of distribution (Vd) and clearance (CL) values. The AUC 0-t , AUC 0-∞ , and MRT of LOS were increased, whereas the CL was decreased by the medium concentration of SMI. In addition, the high, medium, and low doses of SMI increased the relative bioavailability (Frel) of LOS. SMI exhibited no significant effects on the pharmacokinetics of EXP3174. In vitro, SMI exhibited different suppressive effects on the enzyme activity levels of CYP1A2 (6.12%), CYP2B6 (2.72%), CYP2C9 (14.31%), CYP2C19 (12.96%), CYP2D6 (12.26%), CYP3A4 (3.72%), CYP2C8 (10.00-30.00%), MDR1 (0.75%), OATP1B1(2.03%), and BCRP (0.15%). Conclusion: In conclusion, SMI improved the antihypertensive efficacy of LOS in the L-NAME-induced hypertension rat model by increasing the concentration of LOS, while leaving the concentration of EXP3174 intact. SMI affected the pharmacokinetic properties of LOS by decreasing the elimination of LOS. These effects might partly be attributed to the inhibition of the activities of CYP3A4, CYP2C9, and of the drug transporters (P-gp, BCRP, and OATP1B1) by SMI, which need further scrutiny.

18.
Zhongguo Zhong Yao Za Zhi ; 47(4): 931-937, 2022 Feb.
Article in Chinese | MEDLINE | ID: mdl-35285192

ABSTRACT

Aiming to solve the poor compactibility of the alcoholic extract of Zingiberis Rhizoma(ZR), this study explored the feasibility of its physical modification using co-spray drying with a small amount of hydroxypropyl methyl cellulose(HPMC). Based on the univariate analysis, the influence of two independent variables(the HPMC content in the product and the solid content of spray material) on the powder properties and tablet properties of the dried product was investigated by the central composite design. With the tensile strength and disintegration time of the tablets as the evaluation indexes, the optimal prescription was determined as follows: the HPMC content was 15% and the solid content of spray material was 25.6%. The accuracy of the regression model established for predicting tensile strength and disintegration time of tablets was verified, and the results revealed that the measured values were close to the predicted ones with deviations of 0.47% and-8.2%, indicating good prediction and reproducibility of the model. The tensile strength(4.24 MPa) of tablets prepared with the optimal prescription was 3.59 times that(1.18 MPa, far lower than the baseline of 2 MPa for qualified tablets) with the spray-dried powder of the ZR. On the other hand, due to the addition of HPMC, the disintegration time of tablets increased from 7.3 min to 24.6 min. On the whole, this study provided a new strategy to solve the common problem of poor compactibility of raw Chinese medicinal materials, which facilitated the successful preparation of Chinese medicinal tablets with high drug loads.


Subject(s)
Rhizome , Spray Drying , Zingiber officinale , Plant Extracts , Reproducibility of Results
19.
Environ Pollut ; 303: 119103, 2022 Jun 15.
Article in English | MEDLINE | ID: mdl-35283199

ABSTRACT

Nutrient availability, is a crucial anthropogenic stressor promoting freshwater eutrophication and rapid expansion of harmful algal blooms (HABs), deteriorating water quality and threatening public health worldwide. The estimation of the HABs community responses to diel changes in the nutrients while characterizing the ecosystem growth limiting factors, is key to prudent watershed management. The present study investigated the short-term variabilities in autumn cyanobacterial responses to the external nutrient inputs into the Pengxi River using the nutrient addition bioassay approach. Results reveal phytoplankton community structure dominated by the cyanobacteria: Anabaena and Aphanizomenon spp. (relative abundance = 46.20% equilibrium abundance), followed by the diatoms, out of which Lindayia bodaniica, are preponderant. Nutrient enrichment triggered strong variabilities in dominance and successions among the cyanobacterial group, with maximum dominance (76.34%) exhibited by the Aphanizomenon sp. upon NH4 addition. Fe enrichment led to the succession of cyanobacteria, Leptolyngbya tenuis, which was below the detectable limit in the control, indicating the role of Fe in its proliferation. Studies on nutrient limitation demonstrated P/NH4 co-limited ecosystem, with P as the primary and NH4, a secondary limiting factor. The nitrate preference index (NO3-RPI = 0.991) shows a high preference for NH4 while NO3 constitutes the bulk of the ecosystem TN. Considering the elevated NO3 concentration, we posit that a shift in the phytoplankton community structure from cyanobacteria to diatoms dominated ecosystem, is expected following Fe depletion and a further stretch on the current ecosystem NH4 limitation. The study provides useful and first-ever insights for nutrient reduction in the middle Three Gorges Reservoir (TGR) before the onset of the heavy HABs during spring in the Pengxi River.


Subject(s)
Cyanobacteria , Diatoms , Biological Assay , China , Ecosystem , Eutrophication , Female , Humans , Nitrogen/analysis , Nutrients , Phosphorus/analysis , Phytoplankton , Pregnancy , Rivers
20.
Article in English | MEDLINE | ID: mdl-35035496

ABSTRACT

BACKGROUND: There is still a lack of effective therapeutic drugs for nonalcoholic fatty liver disease (NAFLD) to date. In this study, we applied mouse model experiments to clarify the effect of Chinese herbal medicine "Lanzhang Granules (LZG)" on NAFLD and further explore the potential mechanism to provide an alternative method for NAFLD treatment. METHODS: Male C57BL/6J mice were fed with a high-fat diet (HFD) for twenty-two weeks to induce the NAFLD model. LZG intervention was then performed by gavage daily for another eight weeks. At the end of the treatment, serum and liver tissues were collected. Serum biochemical indexes, insulin levels, and liver histopathology were measured to assess the effect of LZG on NAFLD. The liver tissues were then analyzed by RNA sequence for differentially expressed genes and signaling pathways. Results were further analyzed by Protein-Protein Interaction (PPI) networks between the LZG and model groups. The selected different genes and signaling pathways were further verified by RT-PCR and Western blot analysis. Moreover, alpha mouse liver 12 (AML12) cells with lipid accumulation induced by fatty acid were treated with LZG, Fenofibrate (PPARα agonist), or Gw6471 (PPARα antagonist) to confirm the potential pharmacological mechanism. RESULTS: LZG was found to downregulate liver weight, body weight, liver index, and serum levels of ALT, AST, and serum lipid in HFD-induced NAFLD mice. HE and Oil Red O staining showed the improvement of hepatic steatosis and inflammatory infiltration in the mice with LZG treatment. The homeostasis model assessment-insulin resistance (HOMA-IR) index indicated that LZG improved the insulin resistance of NAFLD mice. The RNA sequencing and PPI analysis confirmed the role of LZG in lipid metabolism regulation and identified the peroxisome proliferator-activated receptor alpha (PPARα) signaling pathway as one of the major underlying mechanisms. Western blot and RT-PCR results verified the regulatory effect of LZG on the PPARα pathway, including the upregulation of PPARα, acyl-coenzyme A oxidase 1 (ACOX1), and enoyl-CoA hydratase and 3-hydroxyacyl-CoA dehydrogenase (EHHADH) and the downregulation of TNFα. In vitro experiments showed the effect of LZG in improving lipid accumulation and cell viability in AML12 cells induced by fatty acids, which were alleviated by Gw6471 coincubation. Gw6471could also reverse the transcription of PPAR target genes ACOX1 and EHHADH, which were upregulated by LZG treatment. CONCLUSION: LZG can improve NAFLD in mice or cell models. A major underlying mechanism may be the regulation of the PPARα signaling pathway to improve lipid metabolism and inhibit the inflammatory response. This study will help to promote the clinical application of LZG for the treatment of NAFLD.

SELECTION OF CITATIONS
SEARCH DETAIL