Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters

Database
Type of study
Language
Affiliation country
Publication year range
1.
Cancer Lett ; 501: 20-30, 2021 03 31.
Article in English | MEDLINE | ID: mdl-33359449

ABSTRACT

High-dose radiation exposure induces gastrointestinal (GI) stem cell death, resulting in denudation of the intestinal mucosa and lethality from GI syndrome, for which there is currently no effective therapy. Studying an intestinal organoid-based functional model, we found that Sirtuin1(SIRT1) inhibition through genetic knockout or pharmacologic inhibition significantly improved mouse and human intestinal organoid survival after irradiation. Remarkably, mice administered with two doseages of SIRT1 inhibitors at 24 and 96 h after lethal irradiation promoted Lgr5+ intestinal stem cell and crypt recovery, with improved mouse survival (88.89% of mice in the treated group vs. 0% of mice in the control group). Moreover, our data revealed that SIRT1 inhibition increased p53 acetylation, resulting in the stabilization of p53 and likely contributing to the survival of intestinal epithelial cells post-radiation. These results demonstrate that SIRT1 inhibitors are effective clinical countermeasures to mitigate GI toxicity from potentially lethal radiation exposure.


Subject(s)
Gastrointestinal Diseases/drug therapy , Histone Deacetylase Inhibitors/pharmacology , Intestines/drug effects , Niacinamide/pharmacology , Radiation Injuries, Experimental/drug therapy , Sirtuin 1/antagonists & inhibitors , Acetylation , Animals , Cell Survival/drug effects , Cell Survival/radiation effects , Gastrointestinal Diseases/etiology , Gastrointestinal Diseases/metabolism , Gastrointestinal Diseases/pathology , Humans , Intestinal Mucosa/drug effects , Intestinal Mucosa/metabolism , Intestinal Mucosa/pathology , Intestinal Mucosa/radiation effects , Intestines/pathology , Intestines/radiation effects , Mice , Mice, Inbred C57BL , Mice, Knockout , Organoids , Radiation Injuries, Experimental/metabolism , Radiation Injuries, Experimental/pathology , Sirtuin 1/metabolism , Tumor Suppressor Protein p53/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL