Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters

Therapeutic Methods and Therapies TCIM
Database
Language
Affiliation country
Publication year range
1.
ACS Pharmacol Transl Sci ; 7(2): 421-431, 2024 Feb 09.
Article in English | MEDLINE | ID: mdl-38357273

ABSTRACT

In traditional Chinese medicine, Radix Astragali has played a vital role in treating progressive fibrotic diseases. One of its main active components, astragaloside IV, is a promising anti-fibrotic treatment despite its extremely low bioavailability. Our study aimed to optimize sodium astragalosidate (SA) by salt formation to improve solubility and oral absorption for anti-fibrotic therapy in vivo. Isoproterenol-induced myocardial fibrosis rat models and obese BKS-db mice presenting diabetic kidney fibrosis were used in this study. Daily oral administration of SA (20 mg/kg) for 14 days ameliorated cardiac fibrosis by reducing collagen accumulation and fibrosis-related inflammatory signals, including TNF-α, IL-1ß, and IL-6. In db/db mice, SA (5,10, and 20 mg/kg per day for 8 weeks) dose-dependently alleviated lipid metabolism impairment and renal dysfunction when administered orally. Furthermore, Western blot and immunohistochemistry analyses demonstrated that SA treatment inhibited renal fibrosis by suppressing TGF-ß1/Smads signaling. Taken together, our findings provide the oral-route medication availability of SA, which thus might offer a novel lead compound in preclinical trial-enabling studies for developing a long-term therapy to treat and prevent fibrosis.

2.
J Pharm Biomed Anal ; 231: 115414, 2023 Jul 05.
Article in English | MEDLINE | ID: mdl-37141677

ABSTRACT

Radix Astragali (RA) is commonly used in Asian herbal therapy or food supply, and astragalosides and flavonoids are its major components with diverse pharmaceutical effects. To provide new information on the potential cardiovascular benefits of RA administered orally, the bioaccessibility of these compounds with relevant in vitro digestion parameters was determined for four digestion phases (oral, gastric, small and large intestines) by ultrahigh-performance liquid chromatography quadrupole time-of-flight-mass spectrometry (UPLC-Q-TOF/MS). Meanwhile, we compared the effects of digestion products on advanced glycation end products (AGEs)-induced intracellular reactive oxygen species (ROS) levels in a human arterial endothelial cells (HAECs) model, and studied the potential of RA against oxidative stress-related cardiovascular disease. The changes of saponins and flavonoids composition and antioxidant activity after digestion in intestines were mainly due to the astragaloside IV (AS-IV) biosynthesis involving saponins acetyl isomerization and deacetylation, and the flavonoid glycosides converted to aglycone by deglycosylation processes. All these results suggest that acetyl biotransformation of RA in small intestine directly influenced the response to oxidative stress, and might provide a reference for elucidation of the multi-component action after oral RA in cardiovascular health care.


Subject(s)
Drugs, Chinese Herbal , Saponins , Humans , Chromatography, High Pressure Liquid/methods , Endothelial Cells/chemistry , Saponins/chemistry , Drugs, Chinese Herbal/chemistry , Flavonoids/analysis , Biotransformation , Digestion
3.
Med Sci Monit ; 26: e922634, 2020 Aug 16.
Article in English | MEDLINE | ID: mdl-32799214

ABSTRACT

BACKGROUND The aim of this study was to show whether the standardized Ginkgo biloba extract EGb761, a traditional Chinese medicine, has a therapeutic effect on pulmonary fibrosis (PF). MATERIAL AND METHODS Bleomycin (BLM) was used for establishing the PF mouse model. The mice were treated with a gradient of EGb761 for 28 days to determine an appropriate drug dose. On day 28, the effect of EGb761 on lung injury and inflammation was confirmed by hematoxylin and eosin and Masson staining and evaluated by pulmonary alveolitis and Ashcroft score. The balance of M1/M2 macrophages was evaluated with the respective markers inducible nitric oxide synthase and and interleukin-10 by real-time polymerase chain reaction. Furthermore, the expressions of fibrosis-associated protein alpha-smooth muscle actin (SMA), related inflammatory protein transforming growth factor (TGF)-ß1, the apoptosis-related proteins B-cell lymphoma-associated X protein (Bax), B-cell lymphoma (Bcl)-2, caspase-3, caspase-9, and phosphorylated nuclear factor (NF)-kappaB (p65) were assessed by western blot. RESULTS On day 28, PF was induced by treating with BLM, whereas EGb761 suppressed the PF of lung tissue. The BLM-induced imbalance of M1/M2 macrophages was reduced by EGb761. Furthermore, the increasing amounts of alpha-SMA and TGF-ß1 induced by BLM were suppressed by EGb761. In addition, the protein or messenger ribonucleic acid expression levels of phosphorylated NF-kappaB (p65), caspase-3, and caspase-9 were upregulated, whereas Bax and Bcl-2 were downregulated. Treatment with EGb761 restored the levels of these proteins except for caspase-9. CONCLUSIONS This study illustrated the protective effect of EGb761 on BLM-induced PF by regulating the balance of M1/M2 macrophages and NF-kappaB (p65)-mediated apoptosis. The results demonstrated the potential clinical therapeutic effect of EGb761, providing a novel possibility for curing PF.


Subject(s)
Apoptosis/drug effects , Bleomycin/toxicity , Ginkgo biloba/chemistry , Macrophages, Alveolar/drug effects , NF-kappa B/metabolism , Plant Extracts/pharmacology , Pulmonary Fibrosis/prevention & control , Animals , Disease Models, Animal , Mice , Mice, Inbred C57BL , Pulmonary Fibrosis/chemically induced , Pulmonary Fibrosis/immunology
SELECTION OF CITATIONS
SEARCH DETAIL