Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters

Therapeutic Methods and Therapies TCIM
Database
Language
Affiliation country
Publication year range
1.
Phytother Res ; 38(6): 3122-3145, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38613172

ABSTRACT

Liver fibrosis is a dynamic pathological process that can be triggered by any chronic liver injury. If left unaddressed, it will inevitably progress to the severe outcomes of liver cirrhosis or even hepatocellular carcinoma. In the past few years, the prevalence and fatality of hepatic fibrosis have been steadily rising on a global scale. As a result of its intricate pathogenesis, the quest for pharmacological interventions targeting liver fibrosis has remained a formidable challenge. Currently, no pharmaceuticals are exhibiting substantial clinical efficacy in the management of hepatic fibrosis. Hence, it is of utmost importance to expedite the development of novel therapeutics for the treatment of this condition. Various research studies have revealed the ability of different natural flavonoid compounds to alleviate or reverse hepatic fibrosis through a range of mechanisms, which are related to the regulation of liver inflammation, oxidative stress, synthesis and secretion of fibrosis-related factors, hepatic stellate cells activation, and proliferation, and extracellular matrix synthesis and degradation by these compounds. This review summarizes the progress of research on different sources of natural flavonoids with inhibitory effects on liver fibrosis over the last decades. The anti-fibrotic effects of natural flavonoids have been increasingly studied, making them a potential source of drugs for the treatment of liver fibrosis due to their good efficacy and biosafety.


Subject(s)
Flavonoids , Liver Cirrhosis , Flavonoids/pharmacology , Flavonoids/therapeutic use , Liver Cirrhosis/drug therapy , Humans , Animals , Oxidative Stress/drug effects , Hepatic Stellate Cells/drug effects
2.
Phytother Res ; 37(12): 5599-5621, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37669911

ABSTRACT

As the global population ages, the treatment of neurodegenerative diseases is becoming more and more important. There is an urgent need to discover novel drugs that are effective in treating neurological diseases. In recent years, natural products and their biological activities have gained widespread attention. Lignans are a class of metabolites extensively present in Chinese herbal medicine and possess good pharmacological effects. Latest studies have demonstrated their neuroprotective pharmacological activity in preventing acute/chronic neurodegenerative diseases and depression. In this review, the pharmacological effects of these disorders, the pharmacokinetics, safety, and clinical trials of lignans were summarized according to the scientific literature. These results proved that lignans mainly exert antioxidant and anti-inflammatory activities. Anti-apoptosis, regulation of nervous system functions, and modulation of synaptic signals are also potential effects. Despite the substantial evidence of the neuroprotective potential of lignans, it is not sufficient to support their use in the clinical management. Our study suggests that lignans can be used as prospective agents for the treatment of neurodegenerative diseases and depression, with a view to informing their further development and utilization.


Subject(s)
Biological Products , Lignans , Neurodegenerative Diseases , Humans , Lignans/pharmacology , Lignans/therapeutic use , Neurodegenerative Diseases/drug therapy , Biological Products/pharmacology , Biological Products/therapeutic use , Depression/drug therapy , Prospective Studies
3.
Phytother Res ; 37(6): 2661-2692, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37157181

ABSTRACT

Gastric cancer (GC) is one of the most serious gastrointestinal malignancies with high morbidity and mortality. The complexity of GC process lies in the multi-phenotypic linkage regulation, in which regulatory cell death (RCD) is the core link, which largely dominates the fate of GC cells and becomes a key determinant of GC development and prognosis. In recent years, increasing evidence has been reported that natural products can prevent and inhibit the development of GC by regulating RCDs, showing great therapeutic potential. In order to further clarify its key regulatory characteristics, this review focused on specific expressions of RCDs, combined with a variety of signaling pathways and their crosstalk characteristics, sorted out the key targets and action rules of natural products targeting RCD. It is highlighted that a variety of core biological pathways and core targets are involved in the decision of GC cell fate, including the PI3K/Akt signaling pathway, MAPK-related signaling pathways, p53 signaling pathway, ER stress, Caspase-8, gasdermin D (GSDMD), and so on. Moreover, natural products target the crosstalk of different RCDs by modulating above signaling pathways. Taken together, these findings suggest that targeting various RCDs in GC with natural products is a promising strategy, providing a reference for further clarifying the molecular mechanism of natural products treating GC, which warrants further investigations in this area.


Subject(s)
Biological Products , Stomach Neoplasms , Humans , Stomach Neoplasms/pathology , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Biological Products/pharmacology , Biological Products/therapeutic use , Cell Proliferation , Cell Line, Tumor , Signal Transduction , Apoptosis
4.
Biomed Pharmacother ; 130: 110599, 2020 Oct.
Article in English | MEDLINE | ID: mdl-33236719

ABSTRACT

Drug development has long included the systematic exploration of various resources. Among these, natural products are one of the most important resources from which novel agents are developed due to the multiple pharmacologic effects of these natural products on diseases. Tanshinone, a representative natural product, is the main compound extracted from the dried root and rhizome of Salvia miltiorrhiza Bge. Research on tanshinone began in the early 1930s. With the in-depth investigation of an increasing number of identified analogs, tanshinone has demonstrated a wide variety of bioactivities and contradicted the saying, 'You can't teach an old dog new tricks'. This review is focused on the pharmacological action of tanshinone and status of research on tanshinone in recent years. The mechanism of tanshinone has also drawn much attention, with the findings of representative targets and pathways of tanshinone. The most recent studies have comprehensively shown that tanshinone can be used to treat leukemia and solid carcinoma, protect against cardiovascular and cerebrovascular diseases, and alleviate liver- and kidney-related diseases, among its other effects. Multiple signaling pathways, including antiproliferative, antiapoptotic, anti-inflammatory, and antioxidative stress pathways, are involved in its actions.


Subject(s)
Abietanes/pharmacology , Abietanes/therapeutic use , Biological Products , Animals , Anti-Inflammatory Agents/pharmacology , Humans , Salvia miltiorrhiza/chemistry , Signal Transduction/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL