Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 194
Filter
Add more filters

Complementary Medicines
Publication year range
1.
Int Wound J ; 21(1): e14559, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38272806

ABSTRACT

Localised scleroderma predominantly affects the skin with an unknown aetiology. Despite its clinical importance, no comprehensive bibliometric analysis has been conducted to assess the existing research landscape and future prospects for localised scleroderma. The articles related to localised scleroderma were retrieved from the WoSCC database and analysed by VOSviewer 1.6.10.0 (Leiden University, Netherlands), CiteSpace 6.1.R1 (Dreiser University, USA), and HistCite 2.1 (New York, United States). 2049 research papers pertaining to localised scleroderma spanning the years from 1993 to 2022 were extracted from the WoSCC database. The United States exhibited the highest productivity with 644 papers, accounting for 31.43% of the total output, followed by Germany with 206 papers (10.05%) and Italy with 200 papers (9.76%). Regarding academic institutions and journals, the University of Texas System and Dermatology published the most significant number of papers, and Professor Ihn, H emerged as the most prolific contributor among scholars. The top 10 cited references primarily concentrated on the diagnosis and treatment of localised scleroderma. "Phototherapy" and "methotrexate (MTX)" surfaced as the most recent and noteworthy keywords, representing the research hotspots in the domain of localised scleroderma. This bibliometric analysis furnishes valuable insights into the contemporary research landscape of localised scleroderma.


Subject(s)
Scleroderma, Localized , Humans , Scleroderma, Localized/therapy , Skin , Bibliometrics , Databases, Factual , Germany
2.
PeerJ ; 12: e16761, 2024.
Article in English | MEDLINE | ID: mdl-38223761

ABSTRACT

Background: As one of the main pathogens causing tea anthracnose disease, Colletotrichum gloeosporioides has brought immeasurable impact on the sustainable development of agriculture. Given the adverse effects of chemical pesticides to the environment and human health, biological control has been a focus of the research on this pathogen. Bacillus altitudinis GS-16, which was isolated from healthy tea leaves, had exhibited strong antagonistic activity against tea anthracnose disease. Methods: The antifungal mechanism of the endophytic bacterium GS-16 against C. gloeosporioides 1-F was determined by dual-culture assays, pot experiments, cell membrane permeability, cellular contents, cell metabolism, and the activities of the key defense enzymes. Results: We investigated the possible mechanism of strain GS-16 inhibiting 1-F. In vitro, the dual-culture assays revealed that strain GS-16 had significant antagonistic activity (92.03%) against 1-F and broad-spectrum antifungal activity in all tested plant pathogens. In pot experiments, the disease index decreased to 6.12 after treatment with GS-16, indicating that strain GS-16 had a good biocontrol effect against tea anthracnose disease (89.06%). When the PE extract of GS-16 treated mycelial of 1-F, the mycelial appeared deformities, distortions, and swelling by SEM observations. Besides that, compared with the negative control, the contents of nucleic acids, protein, and total soluble sugar of GS-16 group were increased significantly, indicating that the PE extract of GS-16 could cause damage to integrity of 1-F. We also found that GS-16 obviously destroyed cellular metabolism and the normal synthesis of cellular contents. Additionally, treatment with GS-16 induced plant resistance by increasing the activities of the key defense enzymes PPO, SOD, CAT, PAL, and POD. Conclusions: We concluded that GS-16 could damage cell permeability and integrity, destroy the normal synthesis of cellular contents, and induce plant resistance, which contributed to its antagonistic activity. These findings indicated that strain GS-16 could be used as an efficient microorganism for tea anthracnose disease caused by C. gloeosporioides.


Subject(s)
Antifungal Agents , Bacillus , Colletotrichum , Plant Extracts , Humans , Antifungal Agents/pharmacology , Tea
3.
Appl Biochem Biotechnol ; 196(2): 878-895, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37256487

ABSTRACT

Six compounds were isolated and purified from the crude acetone extract of Aspergillus niger xj. Characterization of all compounds was done by NMR and MS. On the basis of chemical and spectral analysis structure, six compounds were elucidated as metazachlor (1), nonacosane (2), palmitic acid (3), 5,5'-oxybis(5-methylene-2-furaldehyde) (4), dimethyl 5-nitroisophthalate (5) and cholesta-3,5-dien-7-one (6), respectively, and compounds 1, 4, 5 and 6 were isolated for the first time from A. niger. To evaluate the antibacterial activity of compounds 1-6 against three plant pathogenic bacteria (Agrobacterium tumefaciens T-37, Erwinia carotovora EC-1 and Ralstonia solanacearum RS-2), and the minimum inhibitory concentrations (MICs) were determined by broth microdilution method in 96-well microtiter plates. Results of the evaluation of the antibacterial activity showed that T-37 strain was more susceptible to metazachlor with the lowest MIC of 31.25 µg/mL. The antibacterial activity of metazachlor has rarely been reported, thus the antibacterial mechanism of metazachlor against T-37 strain were investigated. The permeability of cell membrane demonstrated that cells membranes were broken by metazachlor, which caused leakage of ions in cells. SDS-PAGE of T-37 proteins indicated that metazachlor could damage bacterial cells through the destruction of cellular proteins. Scanning electron microscopy results showed obvious morphological and ultrastructural changes in the T-37 cells, further confirming the cell membrane damages caused by metazachlor. Overall, our findings demonstrated that the ability of metazachlor to suppress the growth of T-37 pathogenic bacteria makes it potential biocontrol agents.


Subject(s)
Anti-Bacterial Agents , Aspergillus niger , Aspergillus , Aspergillus niger/metabolism , Fermentation , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Acetamides , Bacteria/metabolism , Microbial Sensitivity Tests , Plant Extracts
4.
Chin Med ; 18(1): 140, 2023 Oct 30.
Article in English | MEDLINE | ID: mdl-37904166

ABSTRACT

BACKGROUND: More efficient instruments for body constitution identification are needed for clinical practice. We aimed to develop the short-form version of the Constitution in Chinese Medicine Questionnaire (CCMQ) and evaluate for health management. METHODS: First, the short forms were developed through expert survey, classical test theory (CTT), and modern item response (IRT) based on the CCMQ. A combination of e-mail and manual methods was used in expert survey. Then, five indexes of CTT including criteria value-critical ratio, correlation coefficient, discrete tendency, internal consistency, and factor loading were used. And, IRT method was used through analyzing the discrimination and difficulty parameters of items. Second, the three top-ranked items of each constitution scale were selected for the simplified CCMQ, based on the three combined methods of different conditions and weights. Third, The psychometric properties such as completion time, validity (Construct, criterion, and divergent validity), and reliability (test-retest and internal consistency reliability) were evaluated. Finally, the diagnostic validity of the best short-form used receiver operating characteristic (ROC) curve. RESULTS: Three short-form editions were developed, and retained items 27, 23 and 27, which are named as WangQi nine body constitution questionnaire of Traditional Chinese Medicine (short-form) (SF-WQ9CCMQ)- A, B, and C, respectively. SF-WQ9CCMQ- A is showed the best psychometric property on Construct validity, Criterion validity, test-retest reliability and internal consistency reliability. The diagnostic validity indicated that the area under the ROC curve was 0.928 (95%CI: 0.924-0.932) for the Gentleness constitution scale, and were 0.895-0.969 and 0.911-0.981 for unbalance constitution scales using the cut-off value of the original CCMQ as 40 ("yes" standard) and 30 ("tendency" standard), respectively. CONCLUSIONS: Our study successfully developed a well short-form which has good psychometric property, and excellent diagnostic validity consistent with the original. New and simplified instrument and opportunity are provided for body constitution identification, health management and primary care implementation.

5.
Plant Dis ; 2023 Jul 21.
Article in English | MEDLINE | ID: mdl-37480253

ABSTRACT

Tetrapanax papyrifer (Hook.) K. Koch, widely utilized in clinical practices in traditional Chinese medicine, is a medicinal plant whose dried stem pich exhibits activities such as lactation induction, diuresis, and anti-inflammatory effects. The species is native to the southwest of China, such as Guizhou and Yunnan provinces. It thrives in sunlight and warmth and is planted in fertile valleys in the region (Zhang et al. 2023). In July 2021, a leaf spot-like disease was observed on approximately 15% of T. papyrifer (Big T. papyrifer) in a field in Shibing County (127.2°E, 25.2°N), Guizhou Province, China. The symptomatic leaves displayed irregular, watery dark brown lesions with black conidiomata in gray centers and surrounded by yellow halos. To identify the causal agent leading to the disease, 15 symptomatic leaves from five trees in one field were collected. These leaves underwent surface sterilization, which included 30s in 75% ethanol, 2 min in 3% NaOCl, and three times of washing with sterilized distilled water. Thereafter, small pieces of the symptomatic leaf tissues (0.2 × 0.2 cm) were plated on PDA and incubated at 25°C for seven days (Fang 2007). Three isolates were obtained based on the improved single spore isolation method proposed by Gong et al. (2010), and named as GUTC 321, GUTC 523 and GUTC 873. The fungal colonies on PDA were villiform, creamy-white, whorled, and sparse aerial mycelium on the surface with black, gregarious conidiomata. The conidia were ellipsoid, mid brown to dark brown, mainly with 3-4 transverse septa, usually divided by longitudinal septum, often constricted at the septa, 21.8 (12.6-34.5) × 13.9 (8.8-19.8) µm (n=50). The morphological features were consistent with the descriptions of Pseudopithomyces chartarum (Ariyawansa et al. 2015). All three isolates exhibited identical morphological properties. The potential pathogen was confirmed as P. chartarum by amplification and sequencing of the internal transcribed spacer regions (ITS), large subunit ribosomal (LSU) and translation elongation factor 1 alpha (TEF1) genes with primers ITS4/ITS5, LROR/LR7 and EF-983F/EF-2218R, respectively (Ariyawansa et al. 2015; Jayasiriet al. 2019). BLASTn analyses of the sequences showed 100% identity among the three isolates and a high homology (ITS, 99.8%: 598/599; LSU, 100%: 853/853; and TEF1, 100%: 871/871) with those of P. chartarum sequences in GenBank (MT123059, OK655822, and MK360080, respectively). The sequences of the genes from isolate GUTC321 were deposited in GenBank under accession numbers OP269599 (ITS), OP237015 (LSU), and OR069689 (TEF1). Phylogenetic analyses of the concatenated ITS-LSU-TEF1 sequence (2,685 bp) of GUTC 321 using PhyloSuite 1.2.2 with PartitionFinder model revealed that the isolate clustered closely with P. chartarum isolate CBS 329.86T (Cecilia 1986). The pathogenicity of GUTC 321 was tested thereafter on ten healthy T. papyrifer plants grown in pots in growth chamber. The plants were inoculated by spraying with spore suspension (106 spores mL-1) of GUTC 321 or sterile water (control) onto leaves that had been slightly injured with sterilized SiO2 (0.1-0.25 mm) until runoff. The plants were maintained at 25°C in the growth chamber, and monitored for symptom development. Local lesions began to appear on all GUTC 321-inoculated leaves, but not on those of the control plants, 48 hours after inoculation. Seven days after the inoculation, lesions similar to those observed on field plants occurred on GUTC321-inoculated plants but not on the control plants, the lesions observed only in inoculated leaves. The same fungus was reisolated and identified based on the morphological characterization and molecular analyses (ITS, LSU and TEF1) from the infected leaves thus fulfilling Koch's postulates. To our knowledge, this is the first report of leaf spot on T. papyrifer caused by P. chartarum in China. Considering the significance of T. papyrifer in Chinese medicine, approximate management measures need to be developed and applied to control the disease in the crop.

6.
Mikrochim Acta ; 190(7): 260, 2023 06 15.
Article in English | MEDLINE | ID: mdl-37318602

ABSTRACT

High-throughput screening platforms are fundamental for the rapid and efficient processing of large amounts of experimental data. Parallelization and miniaturization of experiments are important for improving their cost-effectiveness. The development of miniaturized high-throughput screening platforms is essential in the fields of biotechnology, medicine, and pharmacology. Currently, most laboratories use 96- or 384-well microtiter plates for screening; however, they have disadvantages, such as high reagent and cell consumption, low throughput, and inability to avoid cross-contamination, which need to be further optimized. Droplet microarrays, as novel screening platforms, can effectively avoid these shortcomings. Here, the preparation method of the droplet microarray, method of adding compounds in parallel, and means to read the results are briefly described. Next, the latest research on droplet microarray platforms in biomedicine is presented, including their application in high-throughput culture, cell screening, high-throughput nucleic acid screening, drug development, and individualized medicine. Finally, the challenges and future trends in droplet microarray technology are summarized.


Subject(s)
High-Throughput Screening Assays , High-Throughput Screening Assays/methods , Drug Evaluation, Preclinical , Microarray Analysis/methods
7.
J Ethnopharmacol ; 314: 116566, 2023 Oct 05.
Article in English | MEDLINE | ID: mdl-37169317

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: The Chinese herbal prescription Yi-Fei San-Jie pill (YFSJ) has been used for adjuvant treatment in patients with lung cancer for a long time. AIM OF THE STUDY: Reports have indicated that the combination of gefitinib (Gef) with YFSJ inhibits the proliferation of EGFR-TKI-resistant cell lines by enhancing cellular apoptosis and autophagy in non-small cell lung cancer (NSCLC). However, the molecular mechanisms underlying the effect of YFSJ on EGFR-TKI resistance and related metabolic pathways remain to be explored. MATERIALS AND METHODS: In our report, ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS), metabolomics, network pharmacology, bioinformatics, and biological analysis methods were used to investigate the mechanism. RESULTS: The UPLC-MS/MS data identified 42 active compounds of YFSJ extracts. YFSJ extracts can enhance the antitumor efficacy of Gef without hepatic and renal toxicity in vivo. The analysis of the metabolomics pathway enrichment revealed that YFSJ mainly affected the tyrosine metabolism pathway in rat models. Moreover, YFSJ has been shown to reverse Gef resistance and improve the effects of Gef on the cellular viability, migration capacity, and cell cycle arrest of NSCLC cell lines with EGFR mutations. The results of network pharmacology and molecular docking analyses revealed that tyrosine metabolism-related active compounds of YFSJ affect EGFR-TKIs resistance in NSCLC by targeting cell cycle and the MET/EGFR signaling pathway; these findings were validated by western blotting and immunohistochemistry. CONCLUSIONS: YFSJ inhibits NSCLC by inducing cell cycle arrest in the G1/S phase to suppress tumor growth, cell viability, and cell migration through synergistic effects with Gef via the tyrosine metabolic pathway and the EGFR/MET signaling pathway. To summarize, the findings of the current study indicate that YFSJ is a prospective complementary treatment for Gef-resistant NSCLC.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Rats , Animals , Carcinoma, Non-Small-Cell Lung/pathology , Gefitinib/pharmacology , Gefitinib/therapeutic use , Lung Neoplasms/pathology , Molecular Docking Simulation , Chromatography, Liquid , Prospective Studies , ErbB Receptors/metabolism , Drug Resistance, Neoplasm , Tandem Mass Spectrometry , Signal Transduction , Cell Cycle , Cell Line, Tumor , Protein Kinase Inhibitors/pharmacology , Cell Proliferation
8.
J Ethnopharmacol ; 312: 116521, 2023 Aug 10.
Article in English | MEDLINE | ID: mdl-37080368

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Hemorrhagic transformation after acute ischemic stroke is a life-threatening disease that currently has no effective chemotherapy. Zhilong Huoxue Tongyu Capsule (ZL) is an empirical prescription of traditional Chinese medicine that is used to prevent and treat cardiovascular and cerebrovascular diseases in China. However, only a few studies have addressed the mechanisms of ZL in treating hemorrhagic transformation. AIM OF THE STUDY: To evaluate the anti-inflammatory effects of ZL on hemorrhagic transformation model rats and lipopolysaccharide (LPS)-induced RAW264.7 macrophages and to explore the underlying molecular mechanisms. MATERIALS AND METHODS: Murine RAW264.7 cells were treated with ZL and LPS (1 µg/mL), and cell viability was detected by cell counting kit-8 assay. RT-qPCR was used to detect the expression of inflammatory chemokines, microRNA let-7a/e/i/f, toll like receptor 4 (TLR4), myeloid differentiation factor 88 (MyD88), and nuclear factor kappa-B (NF-κB) p65. The protein expression levels of TLR4, MyD88, NF-κB p65, and apoptosis related molecules were determined by Western blotting. The apoptosis rate of RAW264.7 macrophages was detected by Annexin V-FITC/PI double staining. A hemorrhagic transformation model in rats was established by intraperitoneal injection of high glucose solution combined with thread embolization. Then, the model rats were observed behaviourally, pathologically, and molecularly. The gene expression of TLR4, MyD88, and NF-κB p65 was measured by RT-qPCR and used to evaluate the protective effect of ZL against hemorrhagic transformation in rats. RESULTS: ZL (5, 20, 40 µg/mL) was beneficial in cell proliferation. LPS (1 µg/mL) stimulated the production of inflammatory chemokines and inhibited the production of let-7a/e/i/f, with let-7f being influenced most strongly. Moreover, overexpression of let-7f decreased the gene and protein levels of TLR4, MyD88, and NF-κB p65, downregulated TLR4, and inhibited its transcriptional activity. ZL (5, 20, and 40 µg·mL-1) inhibited the production of TLR4, MyD88, and NF-κB p65 and promoted the production of let-7f in a concentration-dependent manner. Furthermore, the blockade of TLR4 antagonized the promoting effects of TLR4 pathway activation in cell inflammation and apoptosis by downregulating let-7f. Critically, it was confirmed in vivo and in vitro that ZL upregulated the expression of let-7f and inhibited the gene expression of TLR4, MyD88, and NF-κB p65 to reduce inflammatory cell infiltration, which determined the occurrence of hemorrhagic transformation. CONCLUSIONS: ZL can reduce inflammatory response by upregulating let-7f and subsequently inhibiting the TLR4 signaling pathway, thereby decreasing the occurrence of hemorrhagic transformation.


Subject(s)
Ischemic Stroke , NF-kappa B , Rats , Mice , Animals , NF-kappa B/metabolism , Toll-Like Receptor 4/genetics , Toll-Like Receptor 4/metabolism , Myeloid Differentiation Factor 88/genetics , Myeloid Differentiation Factor 88/metabolism , Lipopolysaccharides/pharmacology , Signal Transduction
9.
Zhongguo Zhen Jiu ; 43(1): 31-5, 2023 Jan 01.
Article in Chinese | MEDLINE | ID: mdl-36633236

ABSTRACT

OBJECTIVE: To compare the clinical efficacy and safety between syndrome-differentiation acupuncture combined with rehabilitation training and simple rehabilitation training for children with autism spectrum disorder (ASD). METHODS: A total of 60 children with ASD were randomly divided into an observation group and a control group, 30 cases in each group. In the control group, routine rehabilitation training was applied; in the observation group, syndrome-differentiation acupuncture (the main points were Baihui [GV 20], Dingshenzhen, Niesanzhen, etc., the supplementary acupoints were selected according to syndrome-differentiation) combined with rehabilitation training were applied, all the treatments were given once a day, 5-day continuous treatment with 2-day interval, 12 weeks were required. Before treatment and after 6, 12 weeks of treatment, the autism treatment evaluation checklist (ATEC), childhood autism rating scale (CARS) and autism behavior checklist (ABC) scores were observed, the therapeutic effect and safety were evaluated in the two groups. RESULTS: After 6 and 12 weeks of treatment, except for the sensory perception score after 6 weeks of treatment in the control group, the item scores and total scores of ATEC, CARS scores and ABC scores were decreased compared with those before treatment in the two groups (P<0.05). After 6 weeks of treatment, the social score and total score of ATEC, CARS score in the observation group were lower than those in the control group (P<0.05); after 12 weeks of treatment, the item scores and total score of ATEC, CARS score and ABC score in the observation group were lower than those in the control group (P<0.05). The total effective rate in the observation group was 80.0% (24/30), which was higher than 56.7% (17/30) in the control group (P<0.05). There was no serious adverse reactions in the two groups, and there was no significant difference in the incidence rate of adverse reactions between the two groups (P>0.05). CONCLUSION: Syndrome-differentiation acupuncture combined with rehabilitation training could improve the core symptoms in children with ASD, especially sensory perception and social ability, and with good safety, which is superior to simple rehabilitation training.


Subject(s)
Acupuncture Therapy , Autism Spectrum Disorder , Medicine , Child , Humans , Autism Spectrum Disorder/therapy , Treatment Outcome , Acupuncture Points
10.
Zhonghua zhong liu za zhi ; (12): 298-312, 2023.
Article in Chinese | WPRIM | ID: wpr-984723

ABSTRACT

MET gene is a proto-oncogene, which encodes MET protein with tyrosine kinase activity. After binding to its ligand, hepatocyte growth factor, MET protein can induce MET dimerization and activate downstream signaling pathways, which plays a crucial role in tumor formation and metastasis. Savolitinib, as a specific tyrosine kinase inhibitor (TKI) targeting MET, selectively inhibits the phosphorylation of MET kinase with a significant inhibitory effect on tumors with MET abnormalities. Based on its significant efficacy shown in the registration studies, savolitinib was approved for marketing in China on June 22, 2021 for the treatment of advanced non-small cell lung cancer with MET 14 exon skipping mutations. In addition, many studies have shown that MET TKIs are equally effective in patients with advanced solid tumors with MET gene amplification or MET protein overexpression, and relevant registration clinical studies are ongoing. The most common adverse reactions during treatment with savolitinib include nausea, vomiting, peripheral edema, pyrexia, and hepatotoxicity. Based on two rounds of extensive nationwide investigations to guide clinicians, the consensus is compiled to use savolitinib rationally, prevent and treat various adverse reactions scientifically, and improve the clinical benefits and quality of life of patients. This consensus was prepared under the guidance of multidisciplinary experts, especially including the whole-process participation and valuable suggestions of experts in Traditional Chinese Medicine, thus reflecting the clinical treatment concept of integrated Chinese and western medicines.


Subject(s)
Humans , Carcinoma, Non-Small-Cell Lung/genetics , Lung Neoplasms/pathology , Consensus , Quality of Life , Proto-Oncogene Proteins c-met/genetics , Protein Kinase Inhibitors/adverse effects , Drug-Related Side Effects and Adverse Reactions , Mutation
11.
Zhongguo Zhong Yao Za Zhi ; (24): 3032-3038, 2023.
Article in Chinese | WPRIM | ID: wpr-981433

ABSTRACT

This study aimed to investigate the anti-fatigue effect and mechanism of Lubian(Cervi Penis et Testis) on kidney Yin deficiency and kidney Yang deficiency mice. After one week of adaptive feeding, 88 healthy male Kunming mice were randomly divided into a blank group, a kidney Yin deficiency model group, a kidney Yin deficiency-Panacis Quinquefolii Radix(PQR) group, kidney Yin deficiency-Lubian treatment groups, a kidney Yang deficiency model group, a kidney Yang deficiency-Ginseng Radix et Rhizoma(GR) group, and kidney Yang deficiency-Lubian treatment groups, with eight mice in each group. The kidney Yin deficiency model and kidney Yang deficiency model were prepared by daily regular oral administration of dexamethasone acetate and hydrocortisone, respectively, and meanwhile, corresponding drugs were provided. The mice in the blank group received blank reagent. The treatment lasted 14 days. The exhaustive swimming time was measured 30 min after drug administration on the 14th day. On the 15th day, blood was collected from eyeballs and the serum was separated to determine the content of lactic acid(LD), blood urea nitrogen(BUN), lactate dehydrogenase(LDH), cyclic adenosine monophosphate(cAMP), and cyclic guanosine monophosphate(cGMP). The liver was dissected to determine the content of liver glycogen and the protein expression of phosphoinositide 3-kinase(PI3K) and protein kinase B(Akt). Compared with the kidney Yang deficiency model group, the kidney Yang deficiency-Lubian treatment groups showed increased body weight(P<0.05), relieved symptoms of Yang deficiency, decreased cGMP content(P<0.01), increased cAMP/cGMP(P<0.01), prolonged exhausted swimming time(P<0.01), reduced LD(P<0.01), elevated BUN content(P<0.01), increased liver glycogen content(P<0.01), and increased protein expression of PI3K and Akt in the liver(P<0.05). Compared with the kidney Yin deficiency model group, the kidney Yin deficiency-Lubian treatment groups showed increased body weight(P<0.01), relieved symptoms of Yin deficiency, increased content of cGMP(P<0.01), decreased cAMP/cGMP(P<0.01), prolonged exhausted swimming time(P<0.01), decreased LD(P<0.01), decreased BUN content(P<0.01), increased liver glycogen content(P<0.01), and increased protein expression of PI3K(P<0.05) and Akt in the liver(P<0.05). To sum up, Lubian can regulate Yin deficiency and Yang deficiency and increase glycogen synthesis by affecting the PI3K-Akt pathway, thereby exerting an anti-fatigue role.


Subject(s)
Male , Mice , Animals , Phosphatidylinositol 3-Kinases/genetics , Proto-Oncogene Proteins c-akt/genetics , Liver Glycogen , Yang Deficiency/drug therapy , Yin Deficiency/drug therapy , Kidney , Body Weight
12.
Yao Xue Xue Bao ; (12): 1452-1463, 2023.
Article in Chinese | WPRIM | ID: wpr-978738

ABSTRACT

This study aimed to investigate the mechanism of "Trichosanthis Fructus-Allii Macrostemonis Bulbus" (GX) on phlegm and blood stasis syndrome (PBSS) rats combining the methods of network pharmacology and experimental verification. Animal experiment ethical requirements were approved by the Ethical Committee Experimental Animal Center of Anhui University of Chinese Medicine (grant number: AHUCM-rats-2021070). Based on the HPLC-Q-TOF-MS analysis and database, 69 chemical constituents of GX and 163 targets of GX for the treatment of phlegm and blood stasis-related cardiovascular diseases were obtained. Then, key targets such as serine/threonine kinase 1 (Akt1), tumor necrosis factor (TNF), interleukin 6 (IL6), vascular endothelial growth factor A (VEGFA), cellular tumor antigen p53 (Tp53) were screened. Pathway analysis showed that the targets of GX in the treatment of phlegm and blood stasis-relate cardiovascular diseases were mainly involved in PI3K/Akt signaling pathway, sphingolipid metabolism, platelet activation, hypoxia inducible factor-1 (HIF-1), ras-proximate-1 (rap1) and other signaling pathways. In addition, molecular docking analysis showed that apigenin, cucurbitacin D, linolenic acid and kaempferol and other key components had potential binding ability with Akt1, TNF, IL6, VEGFA and Tp53. In the animal experiments, compared to the phlegm and blood stasis syndrome group, GX could significantly improve the traditional Chinese medicine syndrome score, blood lipid, vascular endothelial structure disorders and reduce serum endothelin-1 (ET-1) level, increase serum nitric oxide (NO) and endothelial nitric oxide synthase (eNOS) levels, which could restore aortic endothelial function. In addition, the expression of intercellular cell adhesion molecule-1 (ICAM-1) and vascular cell adhesion molecule-1 (VCAM-1) in aorta could be significantly reduced, which could improve the vascular endothelial injury of aorta. Western blot revealed that GX could significantly decrease the phosphorylation levels of phosphoinositide 3-kinase (PI3K) and Akt in aorta. This study revealed the mechanism of GX in treatment of phlegm and blood stasis-relate cardiovascular diseases is consistent with the characteristics of multiple ingredients, multiple targets and multiple pathways. In addition, this study also clarified that the reversal of pathological of phlegm and blood stasis syndrome rats may be related to GX inhibiting PI3K/Akt signaling pathway, which could improve vascular inflammation and vascular endothelial function injury.

13.
Biosensors (Basel) ; 12(10)2022 Oct 13.
Article in English | MEDLINE | ID: mdl-36291008

ABSTRACT

While there are many clinical drugs for prophylaxis and treatment, the search for those with low or no risk of side effects for the control of infectious and non-infectious diseases is a dilemma that cannot be solved by today's traditional drug development strategies. The need for new drug development strategies is becoming increasingly important, and the development of new drugs from traditional medicines is the most promising strategy. Many valuable clinical drugs have been developed based on traditional medicine, including drugs with single active ingredients similar to modern drugs and those developed from improved formulations of traditional drugs. However, the problems of traditional isolation and purification and drug screening methods should be addressed for successful drug development from traditional medicine. Advances in microfluidics have not only contributed significantly to classical drug development but have also solved many of the thorny problems of new strategies for developing new drugs from traditional drugs. In this review, we provide an overview of advanced microfluidics and its applications in drug development (drug compound synthesis, drug screening, drug delivery, and drug carrier fabrication) with a focus on its applications in conventional medicine, including the separation and purification of target components in complex samples and screening of active ingredients of conventional drugs. We hope that our review gives better insight into the potential of traditional medicine and the critical role of microfluidics in the drug development process. In addition, the emergence of new ideas and applications will bring about further advances in the field of drug development.


Subject(s)
Medicine, Traditional , Microfluidics , Drug Compounding , Drug Development , Drug Carriers
14.
mBio ; 13(5): e0196622, 2022 10 26.
Article in English | MEDLINE | ID: mdl-36129297

ABSTRACT

Prenyldiphosphate synthases catalyze the reaction of allylic diphosphates with one or more isopentenyl diphosphate molecules to form compounds such as farnesyl diphosphate, used in, e.g., sterol biosynthesis and protein prenylation, as well as longer "polyprenyl" diphosphates, used in ubiquinone and menaquinone biosynthesis. Quinones play an essential role in electron transport and are associated with the inner mitochondrial membrane due to the presence of the polyprenyl group. In this work, we investigated the synthesis of the polyprenyl diphosphate that alkylates the ubiquinone ring precursor in Toxoplasma gondii, an opportunistic pathogen that causes serious disease in immunocompromised patients and the unborn fetus. The enzyme that catalyzes this early step of the ubiquinone synthesis is Coq1 (TgCoq1), and we show that it produces the C35 species heptaprenyl diphosphate. TgCoq1 localizes to the mitochondrion and is essential for in vitro T. gondii growth. We demonstrate that the growth defect of a T. gondii TgCoq1 mutant is rescued by complementation with a homologous TgCoq1 gene or with a (C45) solanesyl diphosphate synthase from Trypanosoma cruzi (TcSPPS). We find that a lipophilic bisphosphonate (BPH-1218) inhibits T. gondii growth at low-nanomolar concentrations, while overexpression of the TgCoq1 enzyme dramatically reduced growth inhibition by the bisphosphonate. Both the severe growth defect of the mutant and the inhibition by BPH-1218 were rescued by supplementation with a long-chain (C30) ubiquinone (UQ6). Importantly, BPH-1218 also protected mice against a lethal T. gondii infection. TgCoq1 thus represents a potential drug target that could be exploited for improved chemotherapy of toxoplasmosis. IMPORTANCE Millions of people are infected with Toxoplasma gondii, and the available treatment for toxoplasmosis is not ideal. Most of the drugs currently used are only effective for the acute infection, and treatment can trigger serious side effects requiring changes in the therapeutic approach. There is, therefore, a compelling need for safe and effective treatments for toxoplasmosis. In this work, we characterize an enzyme of the mitochondrion of T. gondii that can be inhibited by an isoprenoid pathway inhibitor. We present evidence that demonstrates that inhibition of the enzyme is linked to parasite death. In addition, the inhibitor can protect mice against a lethal dose of T. gondii. Our results thus reveal a promising chemotherapeutic target for the development of new medicines for toxoplasmosis.


Subject(s)
Toxoplasma , Toxoplasmosis , Animals , Mice , Diphosphates/metabolism , Diphosphonates/pharmacology , Diphosphonates/therapeutic use , Sterols , Toxoplasmosis/drug therapy , Toxoplasmosis/prevention & control , Ubiquinone , Vitamin K 2/pharmacology
15.
J Ethnopharmacol ; 298: 115600, 2022 Nov 15.
Article in English | MEDLINE | ID: mdl-35970313

ABSTRACT

ETHNOPHARMACOLOGICAL EVIDENCE: The anti-inflammatory effect of Dan-Lou tablets (DLT) have been reported; however, the signaling pathways involved and their role in foam cell formation remains unclear. AIM OF THE STUDY: The purpose of this study was to determine the molecular target and mechanism of DLT in the treatment of coronary heart disease (CHD), and investigate the role of DLT in inhibiting foam cell formation and the anti-inflammatory effects of RAW 264.7 macrophages. MATERIALS AND METHODS: This study explored and elucidated the main active components, therapeutic targets, and pharmacological mechanisms of DLT treatment for CHD using network pharmacology. Secondly, the accuracy of the interaction of key active compounds with key proteins was verified by molecular docking analysis. Eight chemical compositions were determined from the ethanol extract of DLT (EEDL) by high-performance liquid chromatography. Finally, this study used EEDL intervention with oxidized low-density lipoprotein (ox-LDL) to induce RAW264.7 macrophages to verify the results of network pharmacology. RESULTS: According to network pharmacological analysis, 269 common targets of DLT and CHD were obtained from an online database, and 24 key targets were obtained from further analysis. GO enrichment and KEGG analyses were performed, mainly involving the cAMP, cGMP-PKG, MAPK, and NF-κB signaling pathways, and vascular smooth muscle contraction. Molecular docking showed that the active components in DLT docked well with MyD88, NF-κB, and p38 MAPK. The eight compounds from the EEDL have been identified as gallic acid, salvianolic acid, puerarin, daidzein, paeoniflorin, salvianolic acid B, cryptotanshinone, and tanshinone IIA with concentrations of 4.62, 4.76, 23.73, 34.24, 14.59, 21.69, 0.34, and 0.47 µg/mg, respectively. Further in vitro experiments showed that the levels of MyD88 and p-p38 MAPK in RAW 264.7 macrophages induced by ox-LDL increased noticeably. Stimulating the NF-κB signaling pathway increased the release of pro-flammatory factors (TNF-α and IL-1ß) and strengthened the inflammatory response (P < 0.05 or P < 0.01), while the levels of MyD88, p38 MAPK, NF-κB, TNF-α, and IL-1ß decreased after EEDL treatment (P < 0.05 or P < 0.01). CONCLUSION: The study demonstrated that the anti-inflammatory activity of the DLT intervention of ox-LDL-induced RAW 264.7 macrophages may involve the MyD88/p38 MAPK/NF-κB signaling pathway.


Subject(s)
Myeloid Differentiation Factor 88 , NF-kappa B , Animals , Anti-Inflammatory Agents/chemistry , Lipoproteins, LDL/metabolism , Macrophages , Mice , Molecular Docking Simulation , Myeloid Differentiation Factor 88/metabolism , NF-kappa B/metabolism , RAW 264.7 Cells , Signal Transduction , Tablets , Tumor Necrosis Factor-alpha/metabolism , p38 Mitogen-Activated Protein Kinases/metabolism
16.
Angew Chem Int Ed Engl ; 61(40): e202209293, 2022 10 04.
Article in English | MEDLINE | ID: mdl-35912895

ABSTRACT

Herein, cobaloxime is used for the first time as a catalyst for the synthesis of phosphorylated heteroaromatics, which is an intriguing and versatile functional motif. With visible-light irradiation, cobaloxime not only oxidizes phosphine oxides to form phosphorus radicals (P-radicals) for a subsequent reaction with radical acceptor isocyanides or heteroaromatics, but also combines the radical intermediate with ß-H elimination, thereby producing phosphorylated heteroaromatics with only H2 or CH4 as byproduct. Phosphine oxides with dialkyl, alkylaryl, and diaryl substituents could be directly transformed into phosphorylated phenanthridines, benzothiazoles, isoquinolines, and common heteroaromatics. This catalytic system features extremely mild conditions, broad substrate scope and good to excellent yields. Scale-up reaction and sunlight reaction show the great application potential in the green synthesis of important organophosphorus chemicals.


Subject(s)
Cyanides , Oxides , Benzothiazoles , Isoquinolines , Organometallic Compounds , Phenanthridines , Phosphines , Phosphorus
17.
J Pharm Biomed Anal ; 219: 114922, 2022 Sep 20.
Article in English | MEDLINE | ID: mdl-35850016

ABSTRACT

The Danlou tablets (DLT) is a patented Chinese medicine that can effectively ameliorate coronary heart disease- and angina pectoris-related chest congestion and pain. However, the mechanism underlying the therapeutic effects of DLT in the context of stable angina pectoris (SAP) has not been clearly elucidated. In this study, ultra-performance liquid chromatography quadrupole time-of-flight mass spectrometry (UPLC-Q-TOF/MS) was used to analyze serum samples from patients with SAP before and after DLT administration. The results of metabolomic analyses were verified biologically, and the mechanisms of action of DLT with respect to treating SAP were elucidated. Nineteen biomarkers were identified. Among these biomarkers, the levels of 15 reverted to those corresponding to a healthy state following DLT treatment. The main metabolic pathways associated with the functions of DLT in SAP were energy metabolism, purine metabolism, glycerophospholipid metabolism and amino acid metabolism, all of which are related to oxidative stress. Biological verification revealed that DLT decreased the expression of the oxidative stress indicators, xanthine oxidase (XOD) and malondialdehyde (MDA), and increased heme oxygenase-1 (HO-1) expression and superoxide dismutase (SOD) activity. Taken together, we revealed that DLT effectively ameliorates SAP by adjusting the oxidative stress status. This study provided an objective index for evaluating the efficacy of DLT for treating SAP.


Subject(s)
Angina, Stable , Antioxidants , Angina, Stable/drug therapy , Antioxidants/pharmacology , Antioxidants/therapeutic use , Biomarkers , Chromatography, High Pressure Liquid , Drugs, Chinese Herbal , Humans , Metabolomics/methods
18.
Zhongguo Zhong Yao Za Zhi ; 47(14): 3915-3922, 2022 Jul.
Article in Chinese | MEDLINE | ID: mdl-35850850

ABSTRACT

The study investigated the difference of intestinal absorption characteristics of root tuber of Cynanchum auriculatum extract between normal and functional dyspepsia(FD) model rats with everted intestine sac model.The content of syringic acid, scopoletin, caudatin, baishouwu benzophenone, qingyangshengenin and deacyhmetaplexigenin in the C.auriculatum extract in different intestinal segments was detected by UPLC-MS/MS.The cumulative absorption amount(Q) and absorption rate constant(K_a) of the six chemical constituents were calculated.The results showed that the six components could be absorbed into the intestinal sac and were unsaturated, which indicated that the absorption mechanism of scopoletin was active transport in the intestine, while that of the other five components were passive diffusion.For normal group, the syringic acid and baishouwu benzophenone in ileum, qingyangshengenin and deacyhmetaplexigenin in ileum and duodenum, and caudatin in colon were well absorbed and scopoletin at low, medium and high concentrations was found excellent absorption in jejunum, ileum, and colon, respectively.Whereas the best absorption site of each component was ileum in model group.The absorption characteristics of each component between normal group and model group were complex at different concentrations, showing inconsistent tendency of absorption, which suggested that the components of root tuber of C.auriculatum extract were selectively absorbed in small intestine, and the absorption characteristics of the six components could be changed under FD status.This study provided theoretical basis for the clinical drug application and development of root tuber of C.auriculatum.


Subject(s)
Cynanchum , Drugs, Chinese Herbal , Dyspepsia , Animals , Benzophenones , Chromatography, Liquid , Cynanchum/chemistry , Dyspepsia/drug therapy , Intestinal Absorption , Intestines , Rats , Scopoletin , Tandem Mass Spectrometry
19.
Article in English | MEDLINE | ID: mdl-35368760

ABSTRACT

Methamphetamine (METH) can cause kidney dysfunction. Luteolin is a flavonoid compound that can alleviate kidney dysfunction. We aimed to observe the renal-protective effect of luteolin on METH-induced nephropathies and to clarify the potential mechanism of action. The mice were treated with METH (1.0-20.0 mg/kg/d bodyweight) for 14 consecutive days. Morphological studies, renal function, and podocyte specific proteins were analyzed in the chronic METH model in vivo. Cultured podocytes were used to support the protective effects of luteolin on METH-induced podocyte injury. We observed increased levels of p-Tau and p-GSK3ß and elevated glomerular pathology, renal dysfunction, renal fibrosis, foot process effacement, macrophage infiltration, and podocyte specific protein loss. Inhibition of GSK3ß activation protected METH-induced kidney injury. Furthermore, luteolin could obliterate glomerular pathologies, inhibit podocyte protein loss, and stop p-Tau level increase. Luteolin could also abolish the METH-induced podocyte injury by inactivating GSK3ß-p-Tau in cultured podocytes. These results indicate that luteolin might ameliorate methamphetamine-induced podocyte pathology through GSK3ß-p-Tau axis.

20.
PeerJ ; 10: e13076, 2022.
Article in English | MEDLINE | ID: mdl-35341057

ABSTRACT

Background: Phosphorus (P) is abundant in soils, including organic and inorganic forms. Nevertheless, most of P compounds cannot be absorbed and used by plants. Aspergillus niger v. Tiegh is a strain that can efficiently degrade P compounds in soils. Methods: In this study, A. niger xj strain was mutated using Atmospheric Room Temperature Plasma (ARTP) technology and the strains were screened by Mo-Sb Colorimetry with strong P-solubilizing abilities. Results: Compared with the A. niger xj strain, setting the treatment time of mutagenesis to 120 s, four positive mutant strains marked as xj 90-32, xj120-12, xj120-31, and xj180-22 had higher P-solubilizing rates by 50.3%, 57.5%, 55.9%, and 61.4%, respectively. Among them, the xj120-12 is a highly efficient P solubilizing and growth-promoting strain with good application prospects. The growth characteristics such as plant height, root length, and dry and fresh biomass of peanut (Arachis hypogaea L.) increased by 33.5%, 43.8%, 43.4%, and 33.6%, respectively. Besides available P, the chlorophyll and soluble protein contents also vary degrees of increase in the P-solubilizing mutant strains. Conclusions: The results showed that the ARTP mutagenesis technology can improve the P solubilization abilities of the A. niger mutant strains and make the biomass of peanut plants was enhanced of mutant strains.


Subject(s)
Aspergillus niger , Phosphorus , Aspergillus niger/genetics , Phosphorus/metabolism , Temperature , Plant Breeding , Mutation , Soil
SELECTION OF CITATIONS
SEARCH DETAIL